摘要:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for uplink transmit power control for transmitting periodic channel state information. Other embodiments may be described and claimed.
摘要:
Methods, apparatuses, and systems are described related to mapping special subframes in a wireless communication network. In embodiments, an eNB may assign demodulation reference signals (DM-RSs) and/or cell-specific reference signals (CRSs) to a downlink pilot time slot (DwPTS) of a special subframe responsive to a determined configuration of the special subframe. In embodiments, an eNB may bundle the DwPTS or an uplink pilot time slot (UpPTS) of the special subframe with another subframe for scheduling. In embodiments, a UE may estimate a channel associated with the special subframe based on DM-RSs and/or CRSs transmitted in another subframe. In embodiments, an eNB may exclude the DwPTS from scheduling for certain special subframe configurations if a new carrier type (NCT) is used. In embodiments, an eNB may exclude certain special subframe configurations from use for NCT communications. Other embodiments may be described and claimed.
摘要:
A user equipment (UE) for time division duplex (TDD) communication through a wireless communication channel has a receiver to receive a channel state information reference signal (CSI-RS) subframe configuration value, a CSI-RS configuration value, and a CSI-RS; and circuitry to determine a subframe index corresponding to a temporal position of a special subframe including the CSI-RS; determine a CSI-RS pattern of one or more orthogonal frequency division modulation (OFDM) resource elements carrying the CSI-RS, the pattern being from among a group of CSI-RS patterns that include OF DM resource elements in OFDM symbols corresponding to a physical downlink control channel (PDCCH) region of a legacy LTE wireless communication channel; control the receiver to receive the special subframe carrying the CSI-RS during the temporal position and at the one or more OFDM resource elements of the CSI-RS pattern; and measure the wireless communication channel based on the CSI-RS.
摘要:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for transmitting periodic channel state information having large payload sizes. Other embodiments may be described and claimed.
摘要:
Generally, this disclosure provides apparatus and methods for improved control channel monitoring in a New Carrier Type (NCT) wireless network. A User Equipment (UE) device may include a receiver circuit to receive a Multicast/Broadcast over Single Frequency Network (MBSFN) for Physical Multicast Channel (P-MCH) transmission from an evolved Node B (eNB); an MBSFN for P-MCH detection module to detect and extract an enhanced physical downlink control channel (EPDCCH) signal from the MBSFN subframe for P-MCH transmission; and an EPDCCH monitor module to decode and monitor the extracted EPDCCH signal.
摘要:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for multiplexing channel state information and hybrid automatic repeat request-acknowledgement information. Other embodiments may be described and claimed.
摘要:
Techniques to manage heterogeneous carrier types are described. User equipment may comprise a processor circuit and a network control component for execution on the processor circuit to locate a synchronization signal (SS) and a cell-specific reference signal (CRS) in a physical resource block (PRB) pair of a long term evolution (LTE) system, the PRB pair having a physical signal pattern for a first carrier type, the physical signal pattern for the first carrier type to have a same number of defined positions between the SS and the CRS within the PRB pair as a physical signal pattern for a second carrier type. Other embodiments are described and claimed.
摘要:
A particular kind of component carrier that may be used as a secondary cell in an LTE system is a new type carrier that has reduced or eliminated legacy control signaling such as the omission of CRSs. Alternative techniques are described for performing timing and frequency synchronization in the downlink between an eNB and a UE when CRSs are not present in a component carrier. These techniques involve using either channel state information reference signals or UE-specific reference signals.
摘要:
A particular kind of component carrier that may be used as a secondary cell in an LTE system is a new type carrier that has reduced or eliminated legacy control signaling such as the omission of CRSs. Alternative techniques are described for performing timing and frequency synchronization in the downlink between an eNB and a UE when CRSs are not present in a component carrier. These techniques involve using either channel state information reference signals or UE-specific reference signals.
摘要:
A Second Synchronous Signal (SSS) for a 3GPP LTE downlink signal is generated in such a way that a legacy User Equipment (UE) can determine whether the downlink signal comprises a legacy downlink signal or a New Carrier Type (NCT) downlink signal, which is unavailable to a legacy UE. One exemplary embodiment provides that a first binary sequence and a second binary sequence are generated in which the first and second binary sequences are part of the SSS for the downlink signal. The first binary sequence is multiplied by a first scrambling sequence, and the second binary sequence by a second scrambling sequence in which the first and second scrambling sequences are selected to indicate that the downlink signal is a new carrier type downlink signal. Other exemplary embodiments provide that an order of the first and second scrambling sequences indicates whether the downlink signal is a NCT downlink signal.