摘要:
Embodiments of a gas diffuser plate for distributing gas in a processing chamber are provided. The gas distribution plate includes a diffuser plate having an upstream side and a downstream side, and a plurality of gas passages passing between the upstream and downstream sides of the diffuser plate. The gas passages include hollow cathode cavities at the downstream side to enhance plasma ionization. The depths, the diameters, the surface area and density of hollow cathode cavities of the gas passages that extend to the downstream end can be gradually increased from the center to the edge of the diffuser plate to improve the film thickness and property uniformity across the substrate. The increasing diameters, depths and surface areas from the center to the edge of the diffuser plate can be created by bending the diffuser plate toward downstream side, followed by machining out the convex downstream side. Bending the diffuser plate can be accomplished by a thermal process or a vacuum process. The increasing diameters, depths and surface areas from the center to the edge of the diffuser plate can also be created computer numerically controlled machining. Diffuser plates with gradually increasing diameters, depths and surface areas of the hollow cathode cavities from the center to the edge of the diffuser plate have been shown to produce improved uniformities of film thickness and film properties.
摘要:
Embodiments of a gas diffuser plate for distributing gas in a processing chamber are provided. The gas distribution plate includes a diffuser plate having an upstream side and a downstream side, and a plurality of gas passages passing between the upstream and downstream sides of the diffuser plate. The gas passages include hollow cathode cavities at the downstream side to enhance plasma ionization. The depths, the diameters, the surface area and density of hollow cathode cavities of the gas passages that extend to the downstream end can be gradually increased from the center to the edge of the diffuser plate to improve the film thickness and property uniformity across the substrate. The increasing diameters, depths and surface areas from the center to the edge of the diffuser plate can be created by bending the diffuser plate toward downstream side, followed by machining out the convex downstream side. Bending the diffuser plate can be accomplished by a thermal process or a vacuum process. The increasing diameters, depths and surface areas from the center to the edge of the diffuser plate can also be created computer numerically controlled machining. Diffuser plates with gradually increasing diameters, depths and surface areas of the hollow cathode cavities from the center to the edge of the diffuser plate have been shown to produce improved uniformities of film thickness and film properties.
摘要:
Embodiments of a gas distribution plate for distributing gas in a processing chamber are provided. In one embodiment, a gas distribution assembly for a plasma processing chamber comprises a diffuser plate with gas passages passing between its upstream and downstream sides and hollow cathode cavities at the downstream side of the gas passages. The downstream side of the diffuser plate has a curvature to improve the thickness uniformity and film property uniformity of thin films deposited by PECVD, particularly SiN and amorphous silicon films. The curvature is preferably described by an arc of a circle or ellipse, the apex thereof located at the center point of the diffuser plate. In one aspect, the hollow cathode cavity volume density, surface area density, or the cavity density of the diffuser increases from the center of the diffuser to the outer edge. Methods for manufacturing such a diffuser plate are also provided.
摘要:
An apparatus and method for supporting a substantial center portion of a gas distribution plate is disclosed. At least one support member is capable of engaging and disengaging the diffuser with a mating connection without prohibiting flow of a gas or gasses through the diffuser and is designed to provide vertical suspension to a diffuser that is supported at its perimeter, or capable of supporting the diffuser without a perimeter support. In one aspect, the at least one support member is a portion of a gas delivery conduit and in another embodiment is a plurality of support members separated from the gas delivery conduit. The at least one support member is capable of translating vertical lift, or vertical compression to a center area of the diffuser. A method and apparatus for controlling gas flow from the gas delivery conduit to the gas distribution plate is also disclosed.
摘要:
An apparatus for providing a short return current path for RF current between a process chamber wall and a substrate support is provided. The RF grounding apparatus, which is RF grounded and is place above the substrate transfer port, establishes electrical contact with the substrate support only during substrate processing, such as deposition, to provide return current path for the RF current. One embodiment of the RF grounding apparatus comprises one or more low impedance flexible curtains, which are electrically connected to the grounded chamber wall, and to one or more low impedance blocks, which make contacts with the substrate support during substrate processing. Another embodiment of the RF grounding apparatus comprises a plurality of low impedance flexible straps, which are electrically connected to the grounded chamber wall, and to one or more low impedance blocks, which make contacts with the substrate support during substrate processing. Yet another embodiment of the RF grounding apparatus comprises a plurality of probes, which either are electrically connected to the grounded chamber wall or are grounded by other means, and actuators accompanying the probes. The actuators move the probes to make electrical contact with the substrate support during substrate processing.
摘要:
An apparatus and method for shaping profiles of a large-area PECVD electrode is provided. A plasma-enhanced CVD chamber for processing a large-area substrate is first provided. The chamber includes a lower electrode that supports a large area substrate. The lower electrode is shaped to selectively conform the supported substrate in a selected orientation under operating conditions. The orientation may be either planar or nonplanar. The substrate complies with the shape of the electrode so the substrate is substantially parallel to an upper electrode in the chamber, and/or to a gas diffusion plate in the chamber. The lower electrode comprises a substrate support fabricated from a material of insufficient strength to support itself at operating temperatures and pressure in the chamber. The shape of the substrate support is adjusted by modifying the dimensions and/or planarity of a supporting base structure, and/or by appropriately varying the thickness of the substrate support.
摘要:
Embodiments of the invention generally include shield frame assembly for use with a showerhead assembly, and a showerhead assembly having a shield frame assembly that includes an insulator that tightly fits around the perimeter of a showerhead in a vacuum processing chamber. In one embodiment, a showerhead assembly includes a gas distribution plate and a multi-piece frame assembly that circumscribes a perimeter edge of the gas distribution plate. The multi-piece frame assembly allows for expansion of the gas distribution plate without creating gaps which may lead to arcing. In other embodiments, the insulator is positioned to be have the electric fields concentrated at the perimeter of the gas distribution plate located therein, thereby reducing arcing potential.
摘要:
A method and apparatus for transferring a substrate to a substrate support is provided herein. In one embodiment, a method for transferring a substrate comprises the steps of simultaneously supporting a substrate above an upper surface of a substrate support on a first set and a second set of lift pins movably disposed through the substrate support. The first set of lift pins are extended to a first height and the second set of lift pins are extended to a second height lower than the first height. The second set of lift pins are disposed inward of the first set of lift pins. The relative distance between both the first set and the second set of lift pins and the upper surface is reduced to cause the substrate to contact the upper surface smoothly and substantially continuously from a point near the center of the substrate to the edges of the substrate.
摘要:
A process chamber and a method for controlling the temperature of a substrate positioned on a substrate support assembly within the process chamber are provided. The substrate support assembly includes a thermally conductive body, a substrate support surface on the surface of the thermally conductive body and adapted to support a large area substrate thereon, one or more heating elements embedded within the thermally conductive body, and two or more cooling channels embedded within the thermally conductive body to be coplanar with the one or more heating elements. The cooling channels may be branched into two or more equal-length cooling passages being extended from a single point inlet and into a single point outlet to provide equal resistance cooling.
摘要:
Substrate support methods and apparatus include vertically aligned lift pins that have bearing surfaces that engage friction plates and/or magnetic fields to maintain the vertical orientation of the lift pins during substrate lifting. In some embodiments, a magnetic field and/or weighting may alternatively or additionally be used to control the vertical orientation of the lift pins, limit the angle of the lift pins, and/or prevent the lift pins from unintentionally binding in a susceptor as the susceptor is raised and prevent the resulting uneven support of the substrate.