Abstract:
Provided is a buried ridge waveguide laser diode that has improved temperature characteristics and can reduce optical loss by a leakage current. The buried ridge waveguide laser diode includes: a ridge region that extends vertically with a constant width and is composed of a selective etching layer and a first compound layer formed of a first conductive type material on a portion of the clad layer; and a p-n-p current blocking layer that has a thickness identical to the depth of the ridge region on the clad layer outside the ridge region and includes a second compound layer formed of a second conductive type material opposite to the first conductive type material. At this time, the current blocking layer includes the first compound layer extending on the second compound layer.
Abstract:
Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
Abstract:
A channel switching function is added to a wavelength division multiplexing passive optical network (WDM-PON) system, which is an access optical network system, and the potential transmission rate is increased by combining wide wavelength tunable lasers and a time division multiplexing (TDM) data structure and properly using the necessary optical components. In addition, when the wavelength of a light source or an arrayed waveguide grating (AWG) changes, the wavelength is traced and the magnitude of a transmitted signal is maximized without an additional detour line using a loop-back network structure. Furthermore, fewer thermo-electric controllers (TECs) are required for stabilizing the temperature of an optical line terminal (OLT) using wavelength tunable lasers, each laser electrically changing its wavelength.
Abstract:
Provided is a method of fabricating a semiconductor optical device for use in a subscriber or a wavelength division multiplexing (WDM) optical communication system, in which a laser diode (LD) and a semiconductor optical amplifier (SOA) are integrated in a single active layer. The laser diode (LD) and the semiconductor optical amplifier (SOA) are optically connected to each other, and electrically insulated from each other by ion injection, whereby light generated from the LD is amplified by the SOA to provide low oscillation start current and high intensity of output light when current is individually injected through each electrode.
Abstract:
Provided are a high-speed superluminescent diode, a method of manufacturing the same, and a wavelength-tunable external cavity laser including the same. The superluminescent diode includes a substrate having an active region and an optical mode size conversion region, waveguides including an ridge waveguide in the active region and a deep ridge waveguide in the optical mode size conversion region connected to the active waveguide, an electrode disposed on the ridge waveguide; planarizing layers disposed on sides of the ridge waveguide and the deep ridge waveguide on the substrate, and a pad electrically connected to the electrode, the pad being disposed on the planarizing layers outside the active waveguide.
Abstract:
Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
Abstract:
Provided is a method of fabricating a semiconductor optical device for use in a subscriber or a wavelength division multiplexing (WDM) optical communication system, in which a laser diode (LD) and a semiconductor optical amplifier (SOA) are integrated in a single active layer. The laser diode (LD) and the semiconductor optical amplifier (SOA) are optically connected to each other, and electrically insulated from each other by ion injection, whereby light generated from the LD is amplified by the SOA to provide low oscillation start current and high intensity of output light when current is individually injected through each electrode.
Abstract:
Provided are a high-speed superluminescent diode, a method of manufacturing the same, and a wavelength-tunable external cavity laser including the same. The superluminescent diode includes a substrate having an active region and an optical mode size conversion region, waveguides including an ridge waveguide in the active region and a deep ridge waveguide in the optical mode size conversion region connected to the active waveguide, an electrode disposed on the ridge waveguide; planarizing layers disposed on sides of the ridge waveguide and the deep ridge waveguide on the substrate, and a pad electrically connected to the electrode, the pad being disposed on the planarizing layers outside the active waveguide.
Abstract:
Provided is a buried ridge waveguide laser diode that has improved temperature characteristics and can reduce optical loss by a leakage current. The buried ridge waveguide laser diode includes: a ridge region that extends vertically with a constant width and is composed of a selective etching layer and a first compound layer formed of a first conductive type material on a portion of the clad layer; and a p-n-p current blocking layer that has a thickness identical to the depth of the ridge region on the clad layer outside the ridge region and includes a second compound layer formed of a second conductive type material opposite to the first conductive type material. At this time, the current blocking layer includes the first compound layer extending on the second compound layer.
Abstract:
The present invention relates to a semiconductor laser, having a construction capable of tuning a wavelength, in which a sampled grating distributed feedback SG-DFB structure portion and a sampled grating distributed Bragg reflector SG-DBR structure portion are integrated. In the present invention, the refraction index are varied in accordance with a current applied to the phase control area in the SG-DFB structure portion and the SG-DBR structure portion, whereby it is possible to continuously or discontinuously tune the wavelength. Therefore, in such a wavelength tunable semiconductor laser, its construction is relatively simple, and it is relatively useful to the manufacturing and mass-producing the semiconductor laser. In addition, such a wavelength tunable semiconductor laser has an excellent output optical efficiency while making it possible to tune the wavelength of the wide band.