摘要:
Self-aligned, opposed, nanometer dimension tips are fabricated in pairs, one of each pair being located on a movable, single crystal beam, with the beam being movable in three dimensions with respect to a substrate carrying the other tip of a pair. Motion of one tip with respect to the other is controlled or sensed by transducers formed on the supporting beams. Spring means in each beam allow axial motion of the beam. The tips and beams are fabricated from single crystal silicon substrate, and the tips may be electrically isolated from the substrate by fabricating insulating segments in the beam structure.
摘要:
A method for isolating transistors and a microstructure for providing isolation for transistors includes a beam located on a substrate. The beam is formed from the same material as the substrate, preferably single crystal silicon, and is released so as to be suspended in the cavity and spaced apart from the substrate. The beam is supported in the cavity by a cantilever structure or by spaced pedestals, or both. One or more transistors are fabricated in the beam, and are thus isolated from the substrate and may be isolated from each other if desired. Contact beams may also be provided to contact the transistor electrodes for interconnection of adjacent transistors or connection of the transistors to electrical circuitry on the substrate. The contact beams also provide mechanical support for the beams.Multiple beams in side-by-side arrays or stacked arrays may be provided.
摘要:
Self-aligned, opposed, nanometer dimension tips are fabricated in pairs, one of each pair being located on a movable, single crystal beam, with the beam being movable in three dimensions with respect to a substrate carrying the other tip of a pair. Motion of one tip with respect to the other is controlled or sensed by transducers formed on the supporting beams. Spring means in each beam allow axial motion of the beam. The tips and beams are fabricated from single crystal silicon substrate, and the tips may be electrically isolated from the substrate by fabricating insulating segments in the beam structure.
摘要:
A submicron resistor having negligible parasitic capacitance includes an isolated released beam carried on a single crystal silicon wafer. The resistor is fabricated by defining a resistor region in the substrate, doping the region to produce the desired resistivity, and etching around the region to produce a resistive island. The island is then isolated from the substrate by oxidation, and is released by removing the oxide to produce an isolated, released resistor beam.
摘要:
Mechanically movable microstructure fabricated from a single crystal such as silicon and actuator structures for providing a high degree of controlled, precision motion of nanometer-scale.
摘要:
The present invention relates, in general, to a method for three-dimensional (3D) microfabrication of complex, high aspect ratio structures with arbitrary surface height profiles in metallic materials, and to devices fabricated in accordance with this process. The method builds upon anisotropic deep etching methods for metallic materials previously developed by the inventors by enabling simplified realization of complex, non-prismatic structural geometries composed of multiple height levels and sloping and/or non-planar surface profiles. The utility of this approach is demonstrated in the fabrication of a sloping electrode structure intended for application in bulk micromachined titanium micromirror devices, however such a method could find use in the fabrication of any number of other microactuator, microsensor, microtransducer, or microstructure devices as well.
摘要:
A process cycles between etching and passivating chemistries to create rough sidewalls that are converted into small structures. In one embodiment, a mask is used to define lines in a single crystal silicon wafer. The process creates ripples on sidewalls of the lines corresponding to the cycles. The lines are oxidized in one embodiment to form a silicon wire corresponding to each ripple. The oxide is removed in a further embodiment to form structures ranging from micro sharp tips to photonic arrays of wires. Fluidic channels are formed by oxidizing adjacent rippled sidewalls. The same mask is also used to form other structures for MEMS devices.
摘要:
A microfabrication process for making enclosed, subsurface microfluidic tunnels, cavities, channels, and the like within suspended beams includes etching a single crystal silicon wafer to produce trenches defining a beam. The trench walls are oxidized, and the interior of the beam is etched through a channel via on the top of the beam to form a hollow beam with oxide sidewalls. The beam is released, and the via is then sealed to form an enclosed released channel beam.
摘要:
A micromechanical capacitive accelerometer is provided from a single silicon wafer. The basic structure of the micromechanical accelerometer is etched in the wafer to form a released portion in the substrate, and the released and remaining portions of the substrate are coated with metal under conditions sufficient to form a micromechanical capacitive accelerometer. The substrate is preferably etched using reactive-ion etching for at least the first etch step in the process that forms the basic structure, although in another preferred embodiment, all etching is reactive-ion etching. The accelerometer also may comprise a signal-conditioned accelerometer wherein signal-conditioning circuitry is provided on the same wafer from which the accelerometer is formed, and VLSI electronics may be integrated on the same wafer from which the accelerometer is formed. The micromechanical capacitive accelerometer can be used for airbag deployment, active suspension control, active steering control, anti-lock braking, and other control systems requiring accelerometers having high sensitivity, extreme accuracy and resistance to out of plane forces.
摘要:
A micromechanical capacitive accelerometer is provided from a single silicon wafer. The basic structure of the micromechanical accelerometer is etched in the wafer to form a released portion in the substrate, and the released and remaining portions of the substrate are coated with metal under conditions sufficient to form a micromechanical capacitive accelerometer. The substrate is preferably etched using reactive-ion etching for at least the first etch step in the process that forms the basic structure, although in another preferred embodiment, all etching is reactive-ion etching. The accelerometer also may comprise a signal-conditioned accelerometer wherein signal-conditioning circuitry is provided on the same wafer from which the accelerometer is formed, and VLSI electronics may be integrated on the same wafer from which the accelerometer is formed. The micromechanical capacitive accelerometer can be used for airbag deployment, active suspension control, active steering control, anti-lock braking, and other control systems requiring accelerometers having high sensitivity, extreme accuracy and resistance to out of plane forces.