摘要:
In an imaging apparatus capable of expanding a dynamic range image signals of different levels are read simultaneously from a solid-state element whose light-receiving surface is divided. Read 1/2 frame image signals are switched by a changeover switch circuit at intervals of a 1/2 frame time. One of two image signals of different levels supplied from the two outputs of the changeover switch circuit is delayed at a delay circuit. Further, those image signals are separated into r, g, and b components, and then undergo logarithmic conversion into image signals of multiple desired levels. The signals are digitized at an A/D converter and undergo operations at an adder, which adds while keeping their logarithmic characteristic, and at an inverse logarithmic converter. A luminance signal is obtained at a matrix circuit, and is converted into a logarithm at a logarithmic circuit. The lighting irregularity components of the resulting signal are suppressed. This signal is compressed, and the compressed signal is subtracted at a subtracter to obtain a compression coefficient, which is added to the digitized image signal from the A/D converter. Image signals of a wide dynamic range corrected at the inverse logarithmic converter are obtained for a single image at a TV rate on a real-time basis. Further, the control of exposure to the entire image and the expansion of the dynamic range are possible.
摘要:
An image display apparatus which corrects images, which are projected from a plurality of image display sections onto different regions of a screen, by a correction data calculated from picked up image data, and joins the images so that they can be displayed as a continuous image on the screen.
摘要:
A long time optical recording and repeated reproduction of multimedia information is possible. Using a printer system or printing process system, on a recording medium such as a sheet, the so-called multimedia information in the form of dot codes (36) together with images (32) and characters (34) is recorded. The multimedia information includes audio information such as voices, image information obtainable from a camera and others, and digitally coded data obtainable from a personal computer and other. A pen-like information reproducing device (40) is manually moved to scan the dot codes (36) and to take in the dot codes. The original sound is generated by a voice output device (42) such as an earphone, the original image information is outputted on a display such as a CRT, and the digitally coded original data to a page printer or the like.
摘要:
An image classification apparatus includes an image input device for inputting image data. A filing device stores the input image data and performs a read, retrieval, or edit operation on the data in accordance with a predetermined instruction. A normalizing unit corrects variations in various image input conditions or variations in image input devices to make the input conditions in execution agree with those in learning. A feature extracting unit extracts a feature amount effective for classification. A classification determination unit performs a classification determination operation on the basis of the feature amount obtained by the feature extracting unit. A display unit synthesizes a result of the classification determination operation with the input image, and displays the synthesized result. A learning control unit controls the feature extracting unit and the classification determination unit on the basis of the predetermined learning data. Accordingly, the classification apparatus classifies a portion of the input image which is difficult to extract by binarization or three-dimensional display alone, and displays the classified portion in an easily recognizable visual form.
摘要:
An imaging device having a signal-processing section, an imaging section, and X- and Y-direction angle wire drivers. The imaging section sequentially form images of an object. The signal-processing section obtains X- and Y-direction displacements of the imaging section with respect to an object, from the positional relationship between the images formed by the imaging section. The angle wire drivers drive X- and Y-direction angle wires in accordance with the X- and Y-direction displacements obtained by the signal-processing section, thus moving the imaging section such that the imaging section tracks the object.
摘要:
A solid-state imaging device comprises a semiconductor substrate, a plurality of pixels formed on the semiconductor substrate, an output amplifier circuit for converting a pixel signal generated in each of the pixels to an imaging signal, a plurality of horizontal selecting lines connected to the pixels, a plurality of vertical selecting lines connected to the pixels, and a pixel address circuit for addressing the pixels by applying a read-out signal to the horizontal and vertical selecting lines. The output amplifier circuit includes an output amplifier for converting the pixel signals input from the pixels via the vertical selecting lines, to an imaging signal, and a load resistance reducing circuit for reducing a load resistance of the switching portion in the pixels.
摘要:
A recording and reproducing apparatus of an optical recording medium has a plurality of light sources. A plurality of light beams are radiated by a laser diode array to a track of the optical recording medium, and each of the plurality of light beams reflected by the track is detected by a photodiode and converted into an electrical signal. The laser diode array is arranged such that the beam spots of adjacent ones of the plurality of light beams cross a track direction of the optical recording medium and a track width direction perpendicular to the track direction. The signal detected by the photodiode is converted into an electrical signal and recorded in a frame memory as data corresponding to the signal. The digital data stored in the frame memory is read out by a two-dimensional decoder.
摘要:
An image pickup device electronically senses an object to be photographed and generates an electronic still image signal. An A/D converter converts the electronic still image signal generated by the image pickup device into a digital signal. An error correction coding section performs error correction coding for the digital signal obtained by the A/D converter. A recording modulation section performs recording modulation of an output from the error correction coding section so as to perform predetermined magnetic recording. A recording section records an output from the recording modulation section on a predetermined magnetic recording medium. Different recording media can be used, such as magnetic and semiconductor, provided on respective imaging sub-systems. A semiconductor imaging sub-system is provided with an I/O controller for establishing compatibility with signals of the magnetic imaging sub-system.
摘要:
In the exposure control circuit of an image input device according to the present invention, the rays of light from the subject pass through a diaphragm adjusting the amount of light and undergoes photoelectric conversion at a CCD imaging element. The image signal read from the CCD imaging element is accumulated more than once at an accumulating circuit. The luminance of the subject is detected at a luminance detector. Based on the detected luminance, a condition setting circuit sets the amount of incident light, exposure time, and the number of additions to suitable values. With those suitable settings, the amount of light through the diaphragm, the exposure time of the CCD imaging element, and the number of accumulations by the accumulating circuit are controlled so as to enable the subject to be photographed under the best condition.
摘要:
The image data coding apparatus has an image pickup system for generating at least dynamic images. The apparatus further comprises a data processing section, two transforming sections, a quantizing section, and a coding section. The data processing section three-dimensionally arranges image data for several adjoining frames among the dynamic image data as three-dimensional image data, divides the three-dimensional image data into several three-dimensional blocks with a specified size, and outputs each three-dimensional block data. The first transforming section applies three-dimensional orthogonal transform to the three-dimensional block data and outputs three-dimensional transform coefficient data. The second transforming section transforms the three-dimensional transform coefficient data into one-dimensionally-arranged transform coefficient data. The quantizing section quantizes the one-dimensionally-arranged transform coefficient data with a specified quantization width and generates quantization output. The coding section codes the quantization output and generates coding output.