Abstract:
The present invention discloses a unitized charging and discharging battery management system and a programmable battery management module thereof The unitized charging and discharging battery management system includes a smart battery module and a programmable battery management module, which has a universal loop and a control unit. The smart battery module has at least two smart batteries which are electrically connected by a plurality of switches and circuits of the universal loop to form a charging/discharging loop in series/parallel. The control unit monitors the charging and discharging status of the smart batteries to turn on or off the switches accordingly, so as to manage the smart batteries, thereby enhancing the overall power efficacy of the smart battery module. Besides, the service life of the smart battery module is also prolonged due to the simultaneous charging and discharging capability.
Abstract:
A phase-controlled current source for phase-locked loop is provided. The phase-locked loop includes a voltage-controlled oscillator to associate a charging path or discharging path in order to generate an output signal and the output signal is further sensed so as to generate a loop signal. The phase-controlled current source includes a status memory receiving the loop signal and the reference signal so as to output an energy-triggering/energy-removing signal; and a controllable current source, under the control by energy-triggering/energy-removing signal so as to decide whether a charging and discharging action should be performed, wherein after the charging action or discharging action is decided, the charging path or the discharging path is generated through the reference signal and the loop signal.
Abstract:
A phase-controlled current source for phase-locked loop, the phase-locked loop comprises of a voltage-controlled oscillator to associate a charging path or discharging path in order to generate an output signal and the output signal is further sensed so as to generate a loop signal, then, together with a reference signal, these signals are used to control phase-controlled current source. Phase-controlled current source comprises of a status memory and a controllable current source and the status memory receives reference signal and loop signal in order to generate an energy-triggering/energy-removing signal, controllable current source then follows the energy-triggering/energy-removing signal to decide if to perform charging or discharging behavior; after charging or discharging behavior is decided, loop signal will decide the charging path or discharging path for the controllable current source based on reference signal so as to perform charging or discharging behavior. Phase-controlled current source is used in the current invention which can eliminate the inherent dead zone problem in the prior art phase detector and electric charge pump. Additionally, the electrical circuit is simple and no signal feedback mechanism needs to be adopted, therefore, the system operation frequency can be greatly enhanced.
Abstract:
A chip structure having a history recording unit is provided. The chip structure includes a core circuit unit in addition to the history recording unit. The history recording unit includes a sensing unit, a record unit, and a deliver unit. The sensing unit detects the status of the core circuit unit and generates history information accordingly. The history information is saved into the record unit and can be further output by the deliver unit. Thus, the history information of the chip structure can be recorded and effectively used to eliminate the reliability problem of the chip structure.
Abstract:
A three-dimensional SoC structure formed by stacking multiple chip modules is provided. The three-dimensional SoC structure includes at least two vertical SoC modules and at least one connector module, wherein each connector module electrically connects two vertical SoC modules. Each vertical SoC module is constructed by stacking at least two chip modules vertically. Each chip module includes a module circuit board and at least one preset element. A recess is formed in each module circuit board and provided with a first connecting interface for electrically connecting with the corresponding at least one preset element. The at least two vertical SoC modules are connected by the connector module to form a three-dimensional SoC structure with multiple functions. Besides, the recesses formed in the module circuit boards provide effective heat dissipation paths for the preset elements.
Abstract:
A method for repairing and assembling contact image sensor module and structure thereof are provided. The method includes following steps: (1) making a sensor housing; (2) providing a PCB; (3) assembling the PCB into the sensor housing; (4) melting an end of a securing post located on the sensor housing and forming fastening means for fixing the PCB to the sensor housing; (5) testing the assembled CIS, if it can't pass the test, then cut off the fastening means and take away the PCB for repairing or replacing it; (6) cutting off the securing post located on the housing; (7) making an adapted post with a securing tip and fixing said adapted post to a corresponding position of the sensor housing on which the former securing post being located; (8) assembling the repaired or replaced PCB into the sensor housing, and make the securing tip of the adapted post passing through the securing hole and extending outwardly from the PCB; (9) melting the tip of the adapted post by the manner of hot-press and forming a new fastening means for fixing the repaired or replaced PCB to the sensor housing again.
Abstract:
An optical touch display device is provided. The optical touch display device includes a front frame, a light guide strip, a photosensitive element, and a light source. The front frame includes a body portion having a display opening, at least one positioning board located on a corner of the body portion, and a protecting cover located on the body portion. An end of the protecting cover is adjacent to the positioning board. An opening groove is defined between the protecting cover and the body portion. The body portion, the positioning board, and the protecting cover are integrally formed. The light guide strip is placed in the opening groove. The photosensitive element is fixed on the positioning board. The light source is located between the photosensitive element and the light guide strip, and a light-emitting side of the light source faces a light inlet side of the light guide strip.
Abstract:
A method for arranging memories of a low-complexity low-density parity-check (LDPC) decoder and a low-complexity LDPC decoder using the same method are provided. The main idea of the method for arranging memories of a low-complexity LDPC decoder is to merge at least one or two small-capacity memory blocks into one memory group, so that the memory area can be reduced and the power consumption in reading or writing data is lowered. Besides, as the merged memory group shares the same address line in reading or writing data, at least one delay unit is used to adjust the reading or writing order and thereby ensure data validity. A low-complexity LDPC decoder using the disclosed method can meet the demands of high processing rate and low power consumption.
Abstract:
A microparticle detecting apparatus is disclosed and includes at least one detection unit, each of which includes: a first sieve having at least a first mesh, a separator stacked on one side of the first sieve and having a separator hole, and a second sieve stacked on one side of the separator and having several second meshes. The diameter of the second mesh is smaller than that of the first mesh, and the first and second meshes are misaligned with each other in a vertical direction of the first and second sieves. The detection unit further includes at least a sensor aligned with the first or second mesh for detecting microparticles trapping into the first mesh or passing through the second mesh. Therefore, the microparticle detecting apparatus is suitably used for detecting or counting any microparticles with different size, to effectively shorten the detection processes of sample fluids.
Abstract:
A multi-layer system-on-chip (SoC) module structure is provided. The multi-layer SoC module structure includes at least two circuit board module layers and at least one connector module layer. Each connector module layer is sandwiched between and thus electrically connects two circuit board module layers such that the SoC module structure is formed by stacking. Each circuit board module layer is composed of at least one circuit board module while each connector module layer is composed of at least one connector module. Hence, the SoC module structure can be manufactured as a three-dimensional structure, thus allowing highly flexible connections within the SoC module structure.