摘要:
A preferred condition for forming a Group III nitride compound semiconductor layer on a substrate by a sputtering method is proposed. When a first Group III nitride compound semiconductor layer is formed on a substrate by a sputtering method, an initial voltage of a sputtering apparatus is selected to be not higher than 110% of a sputtering voltage.
摘要:
A first group III nitride compound layer, which is formed on a substrate by a method not using metal organic compounds as raw materials, is heated in an atmosphere of a mixture gas containing a hydrogen or nitrogen gas and an ammonia gas, so that the crystallinity of a second group III nitride compound semiconductor layer formed on the first group III nitride compound layer is improved. When the first group III nitride compound layer is formed on a substrate by a sputtering method, the thickness of the first group III nitride compound layer is set to be in a range of from 50 Å to 3000 Å.
摘要:
An undercoat layer inclusive of a metal nitride layer is formed on a substrate. Group III nitride compound semiconductor layers are formed on the undercoat layer continuously.
摘要:
A group III nitride compound semiconductor device has a substrate and an AlN single crystal layer formed on the substrate. The AlN single crystal layer has a thickness of from 0.5 to 3 &mgr;m and has a substantially flat surface. The half-value width of an X-ray rocking curve of the AlN single crystal layer is not longer than 50 sec. In another device, a group III nitride compound semiconductor layer having a thickness of from 0.01 to 3.2 &mgr;m is grown at a temperature of from 1000 to 1180° C. on a sapphire substrate having a surface nitride layer having a thickness of not larger than 300 Å.
摘要:
A GaN type semiconductor layer having a structure is provided which incorporates a substrate having surface which is opposite to a GaN type semiconductor layer and which is made of Ti.
摘要:
A group III nitride compound semiconductor device is produced according to the following manner. A separation layer made of a material which prevents group III nitride compound semiconductors from being grown thereon is formed on a substrate. Group III nitride compound semiconductors is grown on a surface of the substrate uncovered with the separation layer while keeping the uncovered substrate surface separated by the separation layer.
摘要:
A first group III nitride compound layer, which is formed on a substrate by a method not using metal organic compounds as raw materials, is heated in an atmosphere of a mixture gas containing a hydrogen or nitrogen gas and an ammonia gas, so that the crystallinity of a second group III nitride compound semiconductor layer formed on the first group III nitride compound layer is improved. When the first group III nitride compound layer is formed on a substrate by a sputtering method, the thickness of the first group III nitride compound layer is set to be in a range of from 50 Å to 3000 Å.
摘要:
A GaN type semiconductor layer having a new structure is provided which incorporates a substrate having surface which is opposite to a GaN type semiconductor layer and which is made of Ti.
摘要:
A group III nitride compound semiconductor device has a substrate and an AlN single crystal layer formed on the substrate. The AlN single crystal layer has a thickness of from 0.5 to 3 μm and has a substantially flat surface. The half-value width of an X-ray rocking curve of the AlN single crystal layer is not longer than 50 sec. In another device, a group III nitride compound semiconductor layer having a thickness of from 0.01 to 3.2 μm is grown at a temperature of from 1000 to 1180° C. on a sapphire substrate having a surface nitride layer having a thickness of not larger than 300 Å.
摘要:
A separator layer of Ti is formed on an auxiliary substrate of sapphire or the like. An undercoat layer of TiN is formed on the separator layer. The undercoat layer is provided so that a Group III nitride compound semiconductor layer can be grown with good crystallinity on the undercoat layer. TiN is sprayed on the undercoat layer to form a thermal spray depositing layer. Then, the separator layer is chemically etched to reveal the undercoat layer. Then, a Group III nitride compound semiconductor layer is grown on a surface of the undercoat layer.