摘要:
Systems and methods are disclosed to perform semiconductor processing with a process chamber; a flash lamp adapted to be repetitively triggered; and a controller coupled to the control input of the flash lamp to trigger the flash lamp. The system can deploy a solid state plasma source in parallel with the flash lamp in wafer processing.
摘要:
Systems and methods are disclosed to perform semiconductor processing with a process chamber; a flash lamp adapted to be repetitively triggered; and a controller coupled to the control input of the flash lamp to trigger the flash lamp. The system can deploy a solid state plasma source in parallel with the flash lamp in wafer processing.
摘要:
Systems and methods are disclosed to perform semiconductor processing with a process chamber; a flash lamp adapted to be repetitively triggered; and a controller coupled to the control input of the flash lamp to trigger the flash lamp. The system can deploy a solid state plasma source in parallel with the flash lamp in wafer processing.
摘要:
The present invention provides an apparatus and methods for controlling gas pressure within a semiconductor process chamber. The apparatus comprises a throttle valve 32 positioned downstream of the process chamber outlet for controlling gas flow therethrough. The throttle valve includes a valve body 41 having a through-hole and a plug 44 movably disposed within the valve body for controlling gas flow through the through-hole. The throttle valve incorporates an abrasive element 86 disposed within the valve body in abrading contact with an exposed surface 89 of the plug. The abrasive element effectively removes gas deposited onto the exposed surface of the valve plug during operation of the throttle valve. In another aspect of the invention, the valve body comprises one or more heating elements 77, 78 thermally coupled to the exposed surface of the valve plug for conductively transferring heat to the exposed surface of the valve plug, thereby inhibiting solidification of process gases that may have deposited on this surface.
摘要:
The present invention relates generally to a deposition apparatus for semiconductor processing. More specifically, embodiments of the present invention relate to a deposition apparatus having a reduced reaction zone volume. In some embodiments a deposition apparatus is provided with a process chamber having a raised reaction zone. Other embodiments of the present invention provide a deposition apparatus with a process chamber having a vertical baffle ring. Embodiments of the present invention provide a reduced reaction zone or volume which promotes uniform gas flow pattern and faster gas exchange.
摘要:
Disclosed is a method of making an anodized aluminum susceptor capable of withstanding an elevated temperature of 590° C., or a temperature as high as 475° C. in the presence of an NF3 plasma, without peeling or cracking, which preferably comprises selecting a high purity or low magnesium aluminum alloy, roughening the surface of the alloy, and then anodizing the surface roughened alloy in an electrolyte comprising an organic acid to form the desired anodized aluminum oxide coating thereon. Further, the invention comprises a high purity or low magnesium aluminum alloy susceptor and an organic acid anodic coating thereon highly resistant to spalling or cracking at elevated temperatures.
摘要:
We have discovered that corrosion of an aluminum article (such as a susceptor) exposed to corrosive halogen-containing species within semiconductor processing apparatus can be avoided by fabricating the article from a high purity aluminum-magnesium alloy having an optimum magnesium content. Upon exposure of the article to a halogen-containing species, a protective magnesium halide layer is formed upon or beneath the surface of the article. The protective layer prevents halogens from penetrating to the base aluminum, thereby protecting the article from corrosion and cracking. To protect the magnesium halide layer from abrasion, the article preferably also includes a hard, cohesive coating over the magnesium halide layer. A preferred cohesive coating is aluminum oxide or aluminum nitride. The magnesium content of the aluminum article, to enable formation of a magnesium halide layer, should be in the range of about 0.1% to about 6% by weight, depending on the operational temperature of the article. For temperatures greater than about 250.degree. C., the magnesium content of the aluminum article should range between about 0.1% by weight and about 1.5% by weight of the article. The magnesium may be present throughout the entire article, or at least in a region of the article beneath or at the surface which is to be rendered corrosion-resistant. Although the magnesium can react with chlorine, fluorine, or bromine to form a protective layer of MgCl.sub.2, MgF.sub.2, MgBr.sub.2 or combinations thereof, the most preferred protective layer is one formed of MgF.sub.2. To ensure that the magnesium present in the aluminum article is available for reaction with the halogen to form the protective layer, the magnesium content should exceed the silicon content of the aluminum article by an amount sufficient to ensure formation of the protective layer.
摘要:
A slotted conical (non-flat) spring washer with an encircling ring provides improved spring washer performance. A split or slotted conical spring washer is encircled by a retaining ring that prevents the ends of the washer adjacent to the slot from expanding as the washer is compressed. The ends of the washer on both sides of the slot move to prevent the washer material from exceeding its yield strength. The ring restricts the radial movement of said outside diameter of the washer strip away from a center axis of the washer bore. The ring can be a counter bore in a member to be clamped, a retaining washer having an outside annular washer to act as the ring, or can be integral with the spring washer such that the slot appears not to pass completely through the washer strip.This slotted conical spring washer greatly increases the elastic spring travel available during repeated clamping cycles and during movement of clamped members due to differences in rates of thermal expansion and thermal gradients. A method for using the slotted spring washer fastening system invention assures electrical conductance and/or fluid vessel integrity under high temperatures and thermal gradients and when different materials are used in the clamped and clamping members.
摘要:
The present invention relates generally to a deposition apparatus for semiconductor processing. More specifically, embodiments of the present invention relate to a gas manifold valve cluster and deposition apparatus. In some embodiments of the present invention a gas manifold valve cluster and system are provided that promotes reduced length and volumes of gas lines that will be exposed to atmosphere during cleaning which minimizes the time required to perform process chamber maintenance and therefore increase the productivity of the process chamber. In other embodiments a gas manifold valve cluster and ALD deposition apparatus are provided.
摘要:
A method of making high-k dielectrics is provided. The method comprises providing a substrate having a high-k dielectric layer deposited thereon in a process chamber and introducing a nitrogen containing gas into the process chamber to incorporate nitrogen into the high-k dielectric layer. In one embodiment, the nitrogen containing gas is a nitrogen plasma gas from a source disposed outside the process chamber. The nitrogen plasma gas is introduced into the process chamber at a flow rate from 0 to about 5000 sccm over a time period of about 20 to 1800 seconds. In another embodiment, the process chamber is maintained at a pressure of about 1 to 100 Torr, and at a wafer temperature in the range of about 200° C.-700° C. The high-k dielectric film pre-deposited on the substrate can be formed by atomic layer deposition, chemical vapor deposition (CVD), physical vapor deposition (PVD), jet vapor deposition (JVD), aerosol pyrolysis, and spin-coating.