摘要:
A process for creating a DRAM array having feature widths that transcend the resolution limit of the employed photolithographic process using only five photomasking steps. The process involves the following steps: creation of a half-pitch hard-material mask that is used to etch a series of equidistanty-spaced isolation trenches in a silicon substrate; filling the isolation trenches with insulative material; creation of a hard-material mask consisting of strips that are 1-1/2F in width, separated by spaces that are 1/2F in width, that is used to etch a matrix of storage trenches; angled implantation of a N-type impurity in the storage trench walls; another anisotropic etch to deepen the storage trenches; deposition of a capacitor dielectric layer; deposition of a protective polysilicon layer on top of the dielectric layer; removal of the dielectric layer and the protective polysilicon layer at the bottom of each storage trench with a further anisotropic etch; filling the storage trenches with in-situ-doped polysilicon; planarization down to the substrate level; creation of an access gate on opposite sides of each storage trench, in addition to wordlines which interconnect gates within array columns by anisotropically etching a conformal conductive layer that has been deposited on top of oxide-silicon mesas that run perpendicular to the isolation trenches and are centered between the rows of storage trenches, the oxide-silicon mesas having been created with an etch using a photoresist mask consisting of a series of parallel strips that have been laid down with minimum feature and space width, then plasma etched to 3/4F; creation of source and drains with an N-type implant; and anisotropically etching the metal layer to create bitlines along the sidewalls of the oxide mesas.
摘要:
A CMOS integrated circuit such as a DRAM is fabricated, in which a first layer of polysilicon is used to form transistor gates, and capacitor cell plates are formed from a second polysilicon layer.N-wells are first formed, followed by initial oxide. The application of the CMOS process to the reverse poly technique provides enhanced alignment of critical transistor gates and permits the use of less mask steps in fabricating the CMOS circuit.
摘要:
A split-polysilicon CMOS DRAM process incorporating self-aligned silicidation of the cell plate, transistor gates and N+ regions with a minimum of additional processing steps. By employing a light oxidation step to protect the P-channel transistor sidewall gates from silicidation during a subsequent processing step, the process avoids the problems that may be created by the double etching of the field oxide and active area regions that has heretofore been required for self-aligned silidation utilizing a split-polysilicon CMOS process. A protective nitride layer is used to prevent oxidation on those regions which are to be silicided. When this improved process is utilized for DRAM fabrication, the protective nitride layer may also be utilized as the cell dielectric. Although this process precludes the silicidation of the sources and drains of P-channel transistors, silicidation of other important regions is accomplished with very few steps required beyond those required for the basic split-polysilicon CMOS process without self-aligned silicidation of conductive regions.
摘要:
The present invention provides a programmable structure for a programmable read-only memory (PROM) which utilizes one-sided ozone spacers constructed on the digit lines as one time programmable nodes. An oxide/nitride/oxide layer (ONO) is used as an interface between underlying parallel rows of digit lines, having one-sided ozone spacers, and overlying parallel columns of word lines in a programmable read only memory. With a each digit line passing under each word line in a row/column matrix is formed thereby providing a programmable digit/word line matrix. Each crossing point of the digit and word lines in the matrix will be permanently programmed to either a one or a zero by rupturing the thin ONO dielectric interface by applying the appropriate voltage potential between the associated digit/word line conductors.
摘要:
The present invention provides a programmable structure for a programmable read-only memory (PROM) which utilizes one-sided ozone spacers constructed on the digit lines as one time programmable nodes. An oxide/nitride/oxide layer (ONO) is used as an interface between underlying parallel rows of digit lines, having one-sided ozone spacers, and overlying parallel columns of word lines in a programmable read only memory With a each digit line passing under each word line in a row/column matrix is formed thereby providing a programmable digit/word line matrix. Each crossing point of the digit and word lines in the matrix will be permanently programmed to either a one or a zero by rupturing the thin ONO dielectric interface by applying the appropriate voltage potential between the associated digit/word line conductors.
摘要:
A process for creating and removing temporary silicon dioxide structures on an in-process integrated circuit with minimal effect on existing permanent silicon dioxide structures that are exposed. The process comprises the steps of blanket depositing an ozone-TEOS silicon dioxide layer through chemical vapor deposition on top of the in-process integrated circuit, thus covering permanent structures formed from conventional silicon dioxides (e.g. TEOS and thermal oxides), etching the ozone-TEOS layer to create said temporary structures, and removing the temporary structures using dilute hydrofluoric acid.
摘要:
A one-time, voltage-programmable, logic element has an antifuse element constructed within a trench etched in a silicon substrate. A sidewall of the trench abuts a diffusion region. The trench is lined with a nitride dielectric layer, which is in turn covered by polycrystalline silicon. The polycrystalline silicon serves as a voltage reference line. In a preferred embodiment, the diffusion region forms a first source/drain region of a field-effect transistor. In order to program the element, a voltage sufficient to rupture the nitride dielectric layer is applied between the diffusion region and the reference line. The transistor is utilized to isolate a particular logic element from other logic elements.
摘要:
A one-time, voltage-programmable, read-only memory array in which individual memory cells comprise an insulated-gate, field-effect transistor, the channel of which provides, through a voltage-programmable anti-fuse element, a current path between a reference voltage line and a bitline. In a preferred embodiment, the array comprises a semiconductor substrate having a series of parallel, alternating, minimum-pitch field isolation region and active area strips, a series of parallel, minimum-pitch wordlines overlying and perpendicular to the field isolation region and active area strips, the wordlines being insulated from the active areas by a gate dielectric layer and being dielectrically insulated on their edges and upper surfaces, source/drain junction regions between each wordline pair and field isolation strip pair, a reference voltage line between and coextensive with every other wordline pair that makes anti-fuseable contact to each subjacent pair of cell junctions along its length, antifuseable contact for each cell being made within a trench that extends below junction depth, and is lined with conformal silicon nitride dielectric layer that breaks down when subjected to a programming voltage. A series of minimum pitch bitlines, which run parallel to the wordlines, completes the memory array. Each bitline makes direct contact with each pair of cell junctions along its length. The array is characterized by a non-folded bitline architecture.
摘要:
An insulated-gate vertical FET has a channel region and gate structure that is formed along the sidewall of trench in a P-type semiconductor substrate. The drain and source regions of the FET are formed in the mesa and the base portions of the trench. All contacts to the gate, drain, and source regions can be made from the top surface of the semiconductor substrate. One or more sidewalls of the trench are oxidized with a thin gate oxide dielectric layer followed by a thin polysilicon deposited film to form an insulated gate layer. A reactive ion etch step removes the insulated gate layer from the mesa and the base portion of the trench. An enhanced N-type implant creates the drain and source regions in the mesa and the base portions of the trench. The trench is partially filled with a spacer oxide layer to reduce gate-to-source overlap capacitance. A conformal conductive polysilicon layer is deposited over the insulated gate layer. A portion of the conductive polysilicon layer is extended above the surface of the trench onto the mesa to form a gate contact. A field oxide covers the entire surface of the FET, which is opened in the mesa to form gate and drain contacts, and in the base to form the source contact.
摘要:
A technique for effectively doping a storage node capacitor plate constructed from low temperature deposited rugged polysilicon. A phosphorus silica glass is deposited prior polysilicon deposition and used primarily to uniformly diffuse n-type dopants into the subsequently deposited rugged poly capacitor plate. This doping technique eliminates the need for high temperature doping and will maintain the rugged surface in the poly of the capacitor plate.