摘要:
The process starts with a primary mask, which may be characterized as a pattern of parallel, photoresist strips having substantially vertical edges, each having a minimum feature width F, and being separated from neighboring strips by a minimum space width which is also approximately equal to F. From this primary mask, a set of expendable mandrel strips is created either directly or indirectly. The set of mandrel strips may be characterized as a pattern of parallel strips, each having a feature width of F/2, and with neighboring strips being spaced from one another by a space width equal to 3/2F. A conformal stringer layer is then deposited. The stringer layer material is selected such that it may be etched with a high degree of selectivity with regard to both the mandrel strips and an underlying layer which will ultimately be patterned using a resultant, reduced-pitch mask. The stringer layer is then anisotropically etched to the point where the top of each mandrel strip is exposed. The mandrel strips are then removed with an appropriate etch. A pattern of stringer strips remains which can then be used as a half-pitch mask to pattern the underlying layer. This process may also be repeated, starting with the half-pitch mask and creating a quarter-pitch mask, etc. As can be seen, this technique permits a reduction in the minimum pitch of the primary mask by a factor of 2.sup.-N (where N is an integer 1, 2, 3, . . . ).
摘要:
A bipolar transistor and a bipolar diode are provided at an input pad on an integrated circuit, in order to shunt potential surges caused by electrostatic discharge (ESD). The approach makes use of a bipolar and a diode clamp with an optimized reverse biased breakdown from collector to base to shunt excess current away from sensitive regions with even current distribution for minimal damage. In order to improve the ESD immunity of the positive going ESD with respect to V.sub.SS, the reverse bias breakdowns of the diode and of the transistor's functioning as a collector/base diode are reduced. This circuit provides a simple low cost approach for improving ESD protection, in a process which fits into most standard Cmos process flows with few or no added process steps.
摘要:
A dynamic randon access memory (DRAM) is formed in a series of masking steps, during which a first layer of polysilicon is anisotropically etched. After the anisotropic etch, junctions are added to the polysilicon through doping techniques. A second layer of polysilicon is then deposited and is isotropically etched. By the sequence, critical dimensions are established at preliminary mask layers and subsequent layers do not require the high degree of criticality of dimension.
摘要:
A method of fabricating a phase shifting reticle that can be used as a mask in photolithographic processes such as semiconductor wafer patterning. A transparent quartz substrate is subjected to high voltage ion bombardment to produce patterns of ion implant areas on the substrate. By carefully selecting the dopants for ion implantation and closely controlling the implantation process, areas on the substrate are produced having an absorption property for forming an opaque light blocking area or indexes of refraction different than the quartz substrate and selected to achieve a 0.degree. to 180.degree. phase shift area. This produces a repetitive pattern of alternating light transmission openings and phase shifters having opaque light blockers on either side. Additionally, tapered phase shifters may be implanted into the substrate to extend from a 180.degree. phase shift area into a light transmission opening at a 0.degree. phase shift.
摘要:
A process for creating a DRAM array having feature widths that transcend the resolution limit of the employed photolithographic process using only five photomasking steps. The process involves the following steps: creation of a half-pitch hard-material mask that is used to etch a series of equidistanty-spaced isolation trenches in a silicon substrate; filling the isolation trenches with insulative material; creation of a hard-material mask consisting of strips that are 1-1/2F in width, separated by spaces that are 1/2F in width, that is used to etch a matrix of storage trenches; angled implantation of a N-type impurity in the storage trench walls; another anisotropic etch to deepen the storage trenches; deposition of a capacitor dielectric layer; deposition of a protective polysilicon layer on top of the dielectric layer; removal of the dielectric layer and the protective polysilicon layer at the bottom of each storage trench with a further anisotropic etch; filling the storage trenches with in-situ-doped polysilicon; planarization down to the substrate level; creation of an access gate on opposite sides of each storage trench, in addition to wordlines which interconnect gates within array columns by anisotropically etching a conformal conductive layer that has been deposited on top of oxide-silicon mesas that run perpendicular to the isolation trenches and are centered between the rows of storage trenches, the oxide-silicon mesas having been created with an etch using a photoresist mask consisting of a series of parallel strips that have been laid down with minimum feature and space width, then plasma etched to 3/4F; creation of source and drains with an N-type implant; and anisotropically etching the metal layer to create bitlines along the sidewalls of the oxide mesas.
摘要:
A process for fabricating, on the more or less vertical edge of a silicon mesa, a MOS field-effect transistor which has a spacer-shaped gate and a right-angled channel path. The process involves the following steps: creating a raised region (the mesa) on a planar silicon substrate; creation of a gate oxide layer on the substrate and vertical sidewalls of the mesa; blanket deposition of a gate layer (typically polysilicon); anisotropically etching the gate layer to expose the upper surface of the mesa and leave a stringer gate around the circumference thereof; and doping the upper surface of the mesa and regions of the substrate peripheral to the circumferential polysilicon stringer to create source and drain regions. The standard process provides device density approximately double that of standard FET fabrication processes. Density can be increased even further by increasing the number of silicon mesas with a minimum pitch distance. This may be accomplished by employing the reduced-pitch masking technique disclosed in a copending U.S. patent application. Multiple transistors may be created on a single mesa by creating isolation regions within the mesa. The circumferential gate may be severed so as to provide a pair of gate inputs for transistors created on a single mesa. Enhancements common to conventional MOSFETS, such as lightly-doped source and drains, halos, etc., may be utilized for the new MOSFET process.
摘要:
An improved CMOS fabrication process which uses separate masking steps to pattern N-channel and P-channel transistor gates from a single layer of conductively-doped polycrystalline silicon (poly). The object of the improved process is to reduce the cost and improve the reliability and manufacturability of CMOS devices by dramatically reducing the number of photomasking steps required to fabricate transistors. By processing N-channel and P-channel devices separately, the number of photomasking steps required to fabricate complete CMOS circuitry in a single-polysilicon-layer or single-metal layer process can be reduced from eleven to eight. Starting with a substrate of P-type material, N-channel devices are formed first, with unetched poly left in the future P-channel regions until N-channel processing is complete. The improved CMOS process provides the following advantages over conventional process technology. Use of a masked high-energy punch-through implant for N-channel devices is not required; individual optimization of N-channel and P-channel transistors is made possible; a lightly-doped drain (LDD) design for both N-channel and P-channel transistors is readily implemented; source/drain-to-gate offset may be changed independently for N-channel and P-channel devices; and N-channel and P-channel transistors can be independently controlled and optimized for best LDD performance and reliability.
摘要:
A dymanic random access memory device is constructed in which a first layer of semiconductive material is used to form series of transistors, using buried contacts on a silicon substrate. A dielectric is formed over the surface, and memory cells include a second layer of semiconductive material which is deposited over a dielectric. The active regions of the DRAM form a "dogbone" pattern, in which active regions exhibit elongate shapes in which each end of the elongate shape is wider than a center leg, and adjacent "dogbone" shapes are nested to form a compact pattern.
摘要:
Alignment tolerances between narrow mask lines, for forming interconnects in the array region of an integrated circuit, and wider mask lines, for forming interconnects in the periphery of the integrated circuit, are increased. The narrow mask lines are formed by pitch multiplication and the wider mask lines are formed by photolithography. The wider mask lines and are aligned so that one side of those lines is flush with or inset from a corresponding side of the narrow lines. Being wider, the opposite sides of the wider mask lines protrude beyond the corresponding opposite sides of the narrow mask lines. The wider mask lines are formed in negative photoresist having a height less than the height of the narrow mask lines. Advantageously, the narrow mask lines can prevent expansion of the mask lines in one direction, thus increasing alignment tolerances in that direction. In the other direction, use of photolithography and a shadowing effect caused by the relative heights of the photoresist and the narrow mask lines causes the wider mask lines to be formed with a rounded corner, thus increasing alignment tolerances in that direction by increasing the distance to a neighboring narrow mask line.
摘要:
Alignment tolerances between narrow mask lines, for forming interconnects in the array region of an integrated circuit, and wider mask lines, for forming interconnects in the periphery of the integrated circuit, are increased. The narrow mask lines are formed by pitch multiplication and the wider mask lines are formed by photolithography. The wider mask lines and are aligned so that one side of those lines is flush with or inset from a corresponding side of the narrow lines. Being wider, the opposite sides of the wider mask lines protrude beyond the corresponding opposite sides of the narrow mask lines. The wider mask lines are formed in negative photoresist having a height less than the height of the narrow mask lines. Advantageously, the narrow mask lines can prevent expansion of the mask lines in one direction, thus increasing alignment tolerances in that direction. In the other direction, use of photolithography and a shadowing effect caused by the relative heights of the photoresist and the narrow mask lines causes the wider mask lines to be formed with a rounded corner, thus increasing alignment tolerances in that direction by increasing the distance to a neighboring narrow mask line.