摘要:
A method for manufacturing a substrate with surface substrates by employing photothermal effect is described. Nanoparticles on the surface of the substrate excited by a beam convert light energy to thermal energy. The surface structure on the substrate is formed through the thermal energy generated by the excited nanoparticles. The substrate with plural pores is thus formed.
摘要:
A method for manufacturing a substrate with surface substrates by employing photothermal effect is described. Nanoparticles on the surface of the substrate excited by a beam convert light energy to thermal energy. The surface structure on the substrate is formed through the thermal energy generated by the excited nanoparticles. The substrate with plural pores is thus formed.
摘要:
A method for manufacturing a substrate with a surface substrate by employing photothermal effect is described. Nanoparticles on the surface of the substrate excited by a beam convert light energy to thermal energy. The surface structure on the substrate is formed through the thermal energy generated by the excited nanoparticles. The substrate with a layer of the predetermined pattern is thus formed.
摘要:
A manufacturing method for manufacturing a substrate with a surface substrate by employing photothermal effect is described. Nanoparticles on the surface of the substrate excited by a beam convert light energy to thermal energy. The surface structure on the substrate is formed through the thermal energy generated by the excited nanoparticles. The substrate with a layer of the predetermined pattern is thus formed.
摘要:
A method for forming a micro bump includes forming a first nano-particle layer on a substrate and forming a second nano-particle layer on the first nano-particle layer. The first and second nano-particle layers include a plurality of first nano particles and a plurality of second nano particles, respectively. The method further includes irradiating a laser beam onto the second nano-particle layer, where the laser beam penetrates through the second nano-particle layer and is at least partially absorbed by at least some of the first nano particles to generate heat. The first nano particles and the second nano particles have different absorption rates with respect to the laser beam.
摘要:
A method for forming a micro bump includes forming a first nano-particle layer on a substrate and forming a second nano-particle layer on the first nano-particle layer. The first and second nano-particle layers include a plurality of first nano particles and a plurality of second nano particles, respectively. The method further includes irradiating a laser beam onto the second nano-particle layer, where the laser beam penetrates through the second nano-particle layer and is at least partially absorbed by at least some of the first nano particles to generate heat. The first nano particles and the second nano particles have different absorption rates with respect to the laser beam.
摘要:
The present invention discloses a dual-photoresist method for forming fine-pitched solder bumps on flip chips by utilizing two separate layers of photoresist, i.e., a first thin photoresist layer for patterning the BLM layers on top of the aluminum bonding pads and a second thick photoresist layer for patterning the via openings on top of the BLM layers to supply the necessary thickness required for the solder bumps. The first, thin photoresist layer permits an accurate imaging process to be conducted without focusing problems which are normally associated with thick photoresist layers. As an optional step, the present invention may further utilize a thin layer of non-leachable metal such as Cu or Ni for coating on top of the BLM layer and thus further improving the electrical characteristics of the solder bumps subsequently formed thereon. A majority of the BLM layer is removed with the first, thin photoresist layer and thus, in the final BLM removal process, only a very thin adhesion sublayer of the BLM layer needs to be removed and as a result, ensures a clean removal process without damaging the solder bumps already formed with a fine-pitch.
摘要:
A composite conductive film formed of a polymer-matrix and a plurality of conductive lines less than micro-sized and its fabricating method are provided. The conductive lines are arranged parallel and spaced apart from each other so as to provide anisotropic conductivity. The present conductive film can serve as an electrical connection between a fine-pitch chip and a substrate. Additionally, an adhesive layer is formed on two opposite sides of the conductive film along its conductive direction to increase adhesive areas. The strength and reliability of the package using the conductive film are thus enhanced.
摘要:
A method for dispersing and fixing particles on the bumps of a chip using an electrophoresis technology is provided. The particles and chip bumps are processed to carry charges by applying chemical bonding between metal and thiol with electric charges. The chip is placed in a reactor with a solution along with the conductive particles. The conductive particles are then migrated and fixed to the bonding locations on the bumps of a chip through an electrophoresis procedure. For conductive particles not carrying charges, they can sink naturally to the surface of chip bumps due to their higher density than water in the solution. An electroplating procedure is then applied to fix the conductive particles onto the bump.
摘要:
A self-assembled nanometer conductive bump and a method for fabricating the bump. In the method, a multiplicity of carbon nanotubes that are coated at two ends with chemically functional groups is first provided. A substrate that is equipped with at least one bond pad on a surface is then positioned juxtaposed to the carbon nanotubes for forming a bond between the carbon nanotubes and the metal pads facilitated by a chemical affinity existed between the functional groups and the metal pad.