Abstract:
A fabricating method of a high electron mobility transistor includes providing a substrate. Then, a channel layer, an active layer, a P-type group III-V compound material layer, a metal compound material layer, a hard mask material layer and a patterned photoresist are formed to cover the substrate. Later, a dry etching process is performed to etch the hard mask material layer and the metal compound material layer to form a hard mask and a metal compound layer by taking the patterned photoresist as a mask. During the dry etching process, a spacer generated by by-products is formed to surround the patterned photoresist, the hard mask and the metal compound layer. After the dry etching process, the P-type group III-V compound material layer is etched by taking the spacer and the patterned photoresist as a mask.
Abstract:
A fabricating method of a high electron mobility transistor includes providing a substrate. Then, a channel layer, an active layer, a P-type group III-V compound material layer, a metal compound material layer, a hard mask material layer and a patterned photoresist are formed to cover the substrate. Later, a dry etching process is performed to etch the hard mask material layer and the metal compound material layer to form a hard mask and a metal compound layer by taking the patterned photoresist as a mask. During the dry etching process, a spacer generated by by-products is formed to surround the patterned photoresist, the hard mask and the metal compound layer. After the dry etching process, the P-type group III-V compound material layer is etched by taking the spacer and the patterned photoresist as a mask.
Abstract:
The present invention provides a semiconductor structure including a substrate, at least one fin group and a plurality of sub-fin structures disposed on the substrate, wherein the fin group is disposed between two sub-fin structures, and a top surface of each sub-fin structure is lower than a top surface of the fin group; and a shallow trench isolation (STI) disposed in the substrate, wherein the sub-fin structures are completely covered by the shallow trench isolation.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a gate structure on the substrate; depositing a liner on the gate structure and the substrate; and performing an etching process by injecting a gas comprising CH3F, O2, and He for forming a spacer adjacent to the gate structure.
Abstract:
A method for fabricating a metal-oxide semiconductor (MOS) transistor is disclosed. The method includes the steps of: providing a semiconductor substrate; forming a silicon layer on the semiconductor substrate; performing a first photo-etching process on the silicon layer for forming a gate pattern; forming an epitaxial layer in the semiconductor substrate adjacent to two sides of the gate pattern; and performing a second photo-etching process on the gate pattern to form a slot in the gate pattern while using the gate pattern to physically separate the gate pattern into two gates.
Abstract:
A method of forming a fin structure is provided. First, a substrate is provided, wherein a first region, a second region encompassing the first region, and a third region encompassing the second region are defined on the substrate. Then, a plurality of first trenches having a first depth are formed in the first region and the second region, wherein each two first trenches defines a first fin structure. The first fin structure in the second region is removed. Lastly, the first trenches are deepened to form a plurality of second trenches having a second depth, wherein each two second trenches define a second fin structure. The present invention further provides a structure of a non-planar transistor.
Abstract:
A semiconductor device with a deep trench isolation and a shallow trench isolation includes a substrate. The substrate is divided into a high voltage transistor region and a low voltage transistor region. A deep trench is disposed within the high voltage transistor region. The deep trench includes a first trench and a second trench. The first trench includes a first bottom. The second trench extends from the first bottom toward a bottom of the substrate. A first shallow trench and a second shallow trench are disposed within the low voltage transistor region. A length of the first shallow trench is the same as a length of the second trench. An insulating layer fills in the first trench, the second trench, the first shallow trench and the second shallow trench.
Abstract:
A method of cutting fins includes the following steps. A photomask including a snake-shape pattern is provided. A photoresist layer is formed over fins on a substrate. A photoresist pattern in the photoresist layer corresponding to the snake-shape pattern is formed by exposing and developing. The fins are cut by transferring the photoresist pattern and etching cut parts of the fins.
Abstract:
The present invention provides a semiconductor structure including a substrate, at least one fin group and a plurality of sub-fin structures disposed on the substrate, wherein the fin group is disposed between two sub-fin structures, and a top surface of each sub-fin structure is lower than a top surface of the fin group; and a shallow trench isolation (STI) disposed in the substrate, wherein the sub-fin structures are completely covered by the shallow trench isolation.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes a substrate, a gate structure on the substrate, and a spacer adjacent to the gate structure, in which the bottom of the spacer includes a tapered profile and the tapered profile comprises a convex curve.