Method for manufacturing a thin oxide for use in semiconductor
integrated circuits
    1.
    发明授权
    Method for manufacturing a thin oxide for use in semiconductor integrated circuits 失效
    制造用于半导体集成电路的薄氧化物的方法

    公开(公告)号:US6146948A

    公开(公告)日:2000-11-14

    申请号:US868331

    申请日:1997-06-03

    CPC分类号: H01L21/823462

    摘要: A method for forming a gate dielectric having different thickness begins by providing a substrate (12). A sacrificial oxide (14) is formed overlying the substrate (12). A first portion (11) of the sacrificial oxide (14) is exposed to a carbon-containing plasma environment (20). This carbon-containing plasma environment (20) forms a carbon-containing layer (24) within the region (11). After forming this region (24), a wet etch chemistry (22) is used to remove remaining portions of the sacrificial oxide (14) without forming a layer (24) in the region (13). Furnace oxidation is then used to form regions (26a) and (26b) wherein the growth of region (26a) has been retarded by the presence of the region (24). Therefore, the regions (26a) and (26b) are differing in thickness and can be used to make different transistors having different current gains.

    摘要翻译: 用于形成具有不同厚度的栅极电介质的方法从提供衬底(12)开始。 牺牲氧化物(14)形成在衬底(12)上方。 牺牲氧化物(14)的第一部分(11)暴露于含碳等离子体环境(20)中。 该含碳等离子体环境(20)在区域(11)内形成含碳层(24)。 在形成该区域(24)之后,使用湿蚀刻化学品(22)去除牺牲氧化物(14)的剩余部分,而不在区域(13)中形成层(24)。 然后使用炉氧化形成区域(26a)和(26b),其中区域(26a)的生长已被区域(24)的存在延迟。 因此,区域(26a)和(26b)的厚度不同,可用于制造具有不同电流增益的不同晶体管。

    High quality thin dielectric layer and method of making same
    3.
    发明申请
    High quality thin dielectric layer and method of making same 有权
    优质薄介电层及其制作方法

    公开(公告)号:US20050245019A1

    公开(公告)日:2005-11-03

    申请号:US10836149

    申请日:2004-04-30

    摘要: A high quality thin dielectric layer is achieved by annealing a substrate and base oxide layer at a first temperature in a first ambient and subsequently annealing the substrate and base oxide layer at a second temperature in a second ambient, the base oxide layer overlying a top surface of the substrate. Prior to the first anneal, the base oxide layer has an initial thickness and density. The first anneal causes a first density and thickness change in the base oxide layer from the initial thickness and density to a first thickness and density, with no incorporation of a component of the ambient within the base oxide layer. The first thickness is less than the initial thickness and the first density is greater than the initial density. The second anneal causes a second density and thickness change in the base oxide layer from the first thickness and density to a second thickness and density. The second thickness is larger than the first thickness and the second density is on the order of the greater than or equal to the first density.

    摘要翻译: 通过在第一环境中的第一温度下退火衬底和基底氧化物层,随后在第二环境中的第二温度下对衬底和氧化层进行退火来实现高质量的薄介电层,所述基底氧化物层覆盖在顶表面 的基底。 在第一退火之前,基底氧化物层具有初始厚度和密度。 第一次退火导致基底氧化物层中的初始密度和厚度从初始厚度和密度变化到第一厚度和密度,而不会在基底氧化物层内引入环境的成分。 第一厚度小于初始厚度,第一密度大于初始密度。 第二退火导致基础氧化物层中的第二密度和厚度从第一厚度和密度变化到第二厚度和密度。 第二厚度大于第一厚度,第二密度大于或等于第一密度。

    Process for forming a semiconductor device
    4.
    发明授权
    Process for forming a semiconductor device 有权
    用于形成半导体器件的工艺

    公开(公告)号:US06297173B1

    公开(公告)日:2001-10-02

    申请号:US09383238

    申请日:1999-08-26

    IPC分类号: H01L2131

    摘要: A method for forming an oxynitride gate dielectric layer (202, 204) begins by providing a semiconductor substrate (200). This semiconductor substrate is cleaned via process steps (10-28). Optional nitridation and oxidation are performed via steps (50 and 60) to form a thin interface layer (202). Bulk oxynitride gate deposition occurs via a step (70) to form a bulk gate dielectric material (204) having custom tailored oxygen and nitrogen profile and concentration. A step (10) is then utilized to in situ cap this bulk dielectric layer (204) with a polysilicon or amorphous silicon layer (208). The layer (208) ensures that the custom tailors oxygen and nitrogen profile and concentration of the underlying gate dielectric (204) is preserved even in the presence of subsequent wafer exposure to oxygen ambients.

    摘要翻译: 形成氧氮化物栅极电介质层(202,204)的方法由提供半导体衬底(200)开始。 通过工艺步骤(10-28)清洁该半导体衬底。 通过步骤(50和60)进行可选的氮化和氧化以形成薄界面层(202)。 大量氮氧化物栅极沉积通过步骤(70)发生,以形成具有定制的氧和氮分布和浓度的体栅电介质材料(204)。 然后使用步骤(10)以多晶硅或非晶硅层(208)原位覆盖该体电介质层(204)。 即使在随后的晶片暴露于氧气氛的情况下,层(208)确保定制定制氧气和氮气分布和下层栅极电介质(204)的浓度。

    Process for fabricating a MOSFET device having reduced reverse short
channel effects
    5.
    发明授权
    Process for fabricating a MOSFET device having reduced reverse short channel effects 失效
    具有减小的反向短通道效应的MOSFET器件的制造工艺

    公开(公告)号:US5552332A

    公开(公告)日:1996-09-03

    申请号:US460339

    申请日:1995-06-02

    摘要: A process for the fabrication of an MOSFET device includes the formation of a buffer layer (28) overlying the surface of a semiconductor substrate (14) adjacent to a gate electrode (18). A defect compensating species is diffused through the buffer layer (28) and through a gate dielectric layer (12) to form a defect-compensating region (30) at the surface (14) of the semiconductor substrate (10). The defect-compensating region (30) in conjunction with the buffer layer (28) minimize and control the population of point defects in the channel region (22) of the semiconductor substrate (10). By controlling the population of point defects in the channel region (22), a substantially uniform doping profile is maintained in a shallow doped region (16) formed in the semiconductor substrate (10) at the substrate surface (14). The maintenance of a uniform doping profile in the shallow doped region (16) results in improved threshold voltage stability as the lateral dimension of the channel region (22) is reduced.

    摘要翻译: 用于制造MOSFET器件的工艺包括形成覆盖在与栅电极(18)相邻的半导体衬底(14)的表面上的缓冲层(28)。 缺陷补偿物质通过缓冲层(28)和栅极电介质层(12)扩散,以在半导体衬底(10)的表面(14)处形成缺陷补偿区域(30)。 与缓冲层(28)结合的缺陷补偿区域(30)最小化并控制半导体衬底(10)的沟道区域(22)中的点缺陷的群体。 通过控制沟道区域(22)中的点缺陷的群体,在衬底表面(14)处形成在半导体衬底(10)中的浅掺杂区域(16)中保持基本均匀的掺杂分布。 在浅掺杂区域(16)中维持均匀的掺杂分布导致当沟道区域(22)的横向尺寸减小时阈值电压稳定性得到改善。

    Method of making a high quality thin dielectric layer
    6.
    发明授权
    Method of making a high quality thin dielectric layer 有权
    制造高品质薄介电层的方法

    公开(公告)号:US07001852B2

    公开(公告)日:2006-02-21

    申请号:US10836149

    申请日:2004-04-30

    IPC分类号: H01L21/31

    摘要: A method of making a high quality thin dielectric layer includes annealing a substrate and a base oxide layer overlying a top surface of the substrate at a first temperature in a first ambient and annealing the substrate and base oxide layer at a second temperature in a second ambient subsequent to the first anneal. The first ambient includes an inert gas ambient selected from the group consisting of a nitrogen, argon, and helium ambient. Prior to the first anneal, the base oxide layer has an initial thickness and an initial density. The first anneal causes a first density and thickness change in the base oxide layer from the initial thickness and density to a first thickness and density, with no incorporation of nitrogen, argon, or helium of the ambient within the base oxide layer. The first thickness is less than the initial thickness and the first density is greater than the initial density. The second anneal causes a second density and thickness change in the base oxide layer from the first thickness and density to a second thickness and density. The second thickness is larger than the first thickness and the second density is on the order of the greater than or equal to the first density.

    摘要翻译: 制造高品质薄介电层的方法包括在第一环境中的第一温度下对衬底和覆盖在衬底的顶表面上的基底氧化物层进行退火,并在第二环境中的第二温度退火衬底和基底氧化物层 在第一退火之后。 第一环境包括选自氮,氩和氦环境的惰性气体环境。 在第一退火之前,基底氧化物层具有初始厚度和初始密度。 第一次退火使基底氧化物层中的初始密度和厚度变化从初始厚度和密度到第一厚度和密度,而不会在基底氧化物层内引入环境的氮,氩或氦。 第一厚度小于初始厚度,第一密度大于初始密度。 第二退火导致基础氧化物层中的第二密度和厚度从第一厚度和密度变化到第二厚度和密度。 第二厚度大于第一厚度,第二密度大于或等于第一密度。

    Process for forming a semiconductor device
    7.
    发明授权
    Process for forming a semiconductor device 失效
    用于形成半导体器件的工艺

    公开(公告)号:US5972804A

    公开(公告)日:1999-10-26

    申请号:US963436

    申请日:1997-11-03

    摘要: A method for forming an oxynitride gate dielectric layer (202, 204) begins by providing a semiconductor substrate (200). This semiconductor substrate is cleaned via process steps (10-28). Optional nitridation and oxidation are performed via steps (50 and 60) to form a thin interface layer (202). Bulk oxynitride gate deposition occurs via a step (70) to form a bulk gate dielectric material (204) having custom tailored oxygen and nitrogen profile and concentration. A step (10) is then utilized to in situ cap this bulk dielectric layer (204) with a polysilicon or amorphous silicon layer (208). The layer (208) ensures that the custom tailors oxygen and nitrogen profile and concentration of the underlying gate dielectric (204) is preserved even in the presence of subsequent wafer exposure to oxygen ambients.

    摘要翻译: 形成氧氮化物栅极电介质层(202,204)的方法由提供半导体衬底(200)开始。 通过工艺步骤(10-28)清洁该半导体衬底。 通过步骤(50和60)进行可选的氮化和氧化以形成薄界面层(202)。 大量氮氧化物栅极沉积通过步骤(70)发生,以形成具有定制的氧和氮分布和浓度的体栅电介质材料(204)。 然后使用步骤(10)以多晶硅或非晶硅层(208)原位覆盖该体电介质层(204)。 即使在随后的晶片暴露于氧气氛的情况下,层(208)确保定制定制氧气和氮气分布和下层栅极电介质(204)的浓度。

    Process for forming field isolation
    8.
    发明授权
    Process for forming field isolation 失效
    用于形成场隔离的方法

    公开(公告)号:US5707889A

    公开(公告)日:1998-01-13

    申请号:US645362

    申请日:1996-05-13

    IPC分类号: H01L21/32 H01L21/76

    CPC分类号: H01L21/32

    摘要: An annealed amorphous silicon layer is formed prior to forming field isolation regions when using in a LOCOS field isolation process. The annealed amorphous silicon layer helps to reduce encroachment compared to conventional LOCOS field isolation process and helps to reduce the likelihood of forming pits within a substrate compared to a PBL field isolation process. The annealed amorphous silicon layer may be used in forming field isolation regions that defines the active regions between transistors including MOSFETs and bipolar transistors. Doped silicon or a silicon-rich silicon nitride layer may be used in place of conventional materials. The anneal of the amorphous silicon layer may be performed after forming a silicon nitride layer if the silicon nitride layer is deposited at a temperature no higher than 600 degrees Celsius.

    摘要翻译: 在LOCOS场隔离工艺中使用时,形成退火的非晶硅层,形成场隔离区。 退火的非晶硅层有助于减少与常规LOCOS场隔离过程相比的侵蚀,并且有助于降低与PBL场隔离工艺相比在衬底内形成凹坑的可能性。 退火的非晶硅层可以用于形成场隔离区域,其限定包括MOSFET和双极晶体管的晶体管之间的有源区。 可以使用掺杂硅或富硅的氮化硅层代替常规材料。 如果在不高于600摄氏度的温度下沉积氮化硅层,则可以在形成氮化硅层之后执行非晶硅层的退火。

    Trench isolator structure in an integrated circuit
    9.
    发明授权
    Trench isolator structure in an integrated circuit 失效
    集成电路中的沟槽隔离器结构

    公开(公告)号:US5436488A

    公开(公告)日:1995-07-25

    申请号:US332236

    申请日:1994-10-31

    摘要: The reliability of integrated circuits fabricated with trench isolation is improved by increasing the thickness of the gate dielectric overlying the trench corner. After the trench isolation region (40, 56) has been formed a thin layer of silicon dioxide (44) is chemically vapor deposited over the trench isolation region (44) and the adjacent active region (23). A transistor gate electrode (46) is subsequently formed over the thin layer of silicon dioxide (44). The thin layer of silicon dioxide (44) increases the thickness of the gate dielectric that lies between the transistor gate electrode (46) and the trench corner, and therefore the breakdown voltage of the gate dielectric at the trench corner is increased.

    摘要翻译: 通过增加覆盖在沟槽角上的栅极电介质的厚度来提高通过沟槽隔离制造的集成电路的可靠性。 在已经形成沟槽隔离区域(40,56)之后,在沟槽隔离区域(44)和相邻的有源区域(23)上化学气相沉积薄层二氧化硅(44)。 随后在二氧化硅(44)的薄层上形成晶体管栅电极(46)。 二氧化硅(44)的薄层增加位于晶体管栅极(46)和沟槽角之间的栅极电介质的厚度,因此沟槽角处的栅极电介质的击穿电压增加。

    Method for forming a dual gate oxide device using a metal oxide and resulting device
    10.
    发明授权
    Method for forming a dual gate oxide device using a metal oxide and resulting device 有权
    使用金属氧化物形成双栅极氧化物的方法和所得到的器件

    公开(公告)号:US06787421B2

    公开(公告)日:2004-09-07

    申请号:US10219522

    申请日:2002-08-15

    IPC分类号: H01L218234

    摘要: A semiconductor device (10) having two different gate dielectric thicknesses is formed using a single high-k dielectric layer, preferably a metal oxide. A thicker first gate dielectric (16) is formed in a region of the device for higher voltage requirements, e.g. an I/O region (24). A thinner second gate dielectric (20) is formed in a region of the device for lower voltage requirements, e.g. a core device region (22). First and second dielectrics are preferably silicon dioxide or oxynitride. A metal oxide (26) is deposited over both dielectrics, followed by deposition of a gate electrode material (28). By using a single metal oxide layer in forming the gate dielectric stack for each transistor, together with high quality silicon dioxide or oxynitride dielectric layers, problems associated with selective etching of the metal oxide may be avoided, as may problems associated with various interfaces between the metal oxide and damaged or treated surfaces.

    摘要翻译: 具有两个不同栅介质厚度的半导体器件(10)使用单个高k电介质层,优选金属氧化物形成。 在器件的区域中形成较厚的第一栅极电介质(16),用于更高电压要求,例如, I / O区域(24)。 在器件的一个区域中形成较薄的第二栅极电介质(20),用于降低电压要求,例如, 核心设备区域(22)。 第一和第二电介质优选为二氧化硅或氧氮化物。 金属氧化物(26)沉积在两个电介质上,随后沉积栅电极材料(28)。 通过在形成每个晶体管的栅极电介质堆叠中使用单个金属氧化物层以及高质量的二氧化硅或氧氮化物电介质层,可以避免与金属氧化物的选择性蚀刻相关的问题,这可能与在 金属氧化物和损坏或处理过的表面。