摘要:
In one embodiment, a shift register memory includes first and second control electrodes extending in a first direction parallel to a surface of a substrate, and facing each other in a second direction perpendicular to the first direction. The memory further includes a plurality of first floating electrodes provided in a line on a first control electrode side between the first and second control electrodes. The memory further includes a plurality of second floating electrodes provided in a line on a second control electrode side between the first and second control electrodes. Each of the first and second floating electrodes has a planar shape which is mirror-asymmetric with respect to a plane perpendicular to the first direction.
摘要:
A method for manufacturing a nonvolatile semiconductor memory device, the device including a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction and a semiconductor pillar piercing the stacked structural unit in the first direction, the method includes: forming a stacked unit including a core material film alternately stacked with a sacrificial film on a major surface of a substrate perpendicular to the first direction; making a trench in the stacked unit, the trench extending in the first direction and a second direction in a plane perpendicular to the first direction; filling a filling material into the trench; removing the sacrificial film to form a hollow structural unit, the hollow structural unit including a post unit supporting the core material film on the substrate, the post unit being made of the filling material; and forming the stacked structural unit by stacking one of the insulating films and one of the electrode films on a surface of the core material film exposed by removing the sacrificial film.
摘要:
A nonvolatile semiconductor memory device includes: a semiconductor substrate; a stacked body provided on the semiconductor substrate, the stacked body having electrode films and insulating films being alternately stacked; a first and second semiconductor pillars; and a first and second charge storage layers. The first and second semiconductor pillars are provided inside a through hole penetrating through the stacked body in a stacking direction of the stacked body. The through hole has a cross section of an oblate circle, when cutting in a direction perpendicular to the stacking direction. The first and second semiconductor pillars face each other in a major axis direction of the first oblate circle. The first and second semiconductor pillars extend in the stacking direction. The first and second charge storage layers are provided between the electrode film and the first and second semiconductor pillars, respectively.
摘要:
A nonvolatile semiconductor memory device includes: a semiconductor substrate; a memory unit; and a circuit unit provided between the semiconductor substrate and the memory unit. The memory unit includes: a stacked structural unit having electrode films alternately stacked with inter-electrode-film insulating films; a semiconductor pillar piercing the stacked structural unit; and a storage unit provided corresponding to an intersection between the electrode films and the semiconductor pillar. The circuit unit includes first and second transistors having different conductivity type, a first interconnect, and first and second contact plugs. The first interconnect includes silicide provided on a side of the first and second transistors opposite to the semiconductor substrate. The first contact plug made of polysilicon of the first conductivity type connects the first interconnect to the first transistor. The second contact plug made of polysilicon of the second conductivity type connects the first interconnect to the second transistor.
摘要:
According to one embodiment, a semiconductor memory device comprises a first layer, a first conductive layer, a insulating layer, and a second conductive layer stacked on a substrate, a block insulating layer on inner surfaces of a pair of through-holes formed in the first conductive layer, the insulating layer, and the second conductive layer, and on an inner surface of a connecting hole connecting lower ends of the pair of through-holes, a charge storage layer on the block insulating layer, a second layer on the charge storage layer, and a semiconductor layer on the second layer. The second layer includes an air gap layer on the charge storage layer in the pair of through-holes, and a third conductive layer on the charge storage layer in the connecting hole.
摘要:
In one embodiment, a shift register memory includes a substrate, and a channel layer provided on the substrate, and having a helical shape rotating around an axis which is perpendicular to a surface of the substrate. The memory further includes at least three control electrodes provided on the substrate, extending in a direction parallel to the axis, and to be used to transfer charges in the channel layer.
摘要:
A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of stacked component units stacked in a first direction, each of the stacked component units including a first conducting film made of a semiconductor of a first conductivity type provided perpendicular to the first direction and a first insulating film stacked in the first direction with the first conducting film; a semiconductor pillar piercing the stacked structural unit in the first direction and including a conducting region of a second conductivity type, the semiconductor pillar including a first region opposing each of the first conducting films, and a second region provided between the first regions with respect to the first direction, the second region having a resistance different from a resistance of the first region; and a second insulating film provided between the semiconductor pillar and the first conducting film.
摘要:
A shift register memory according to the present embodiment includes a magnetic pillar including a plurality of magnetic layers and a plurality of nonmagnetic layers provided between the magnetic layers adjacent to each other. A stress application part applies a stress to the magnetic pillar. A magnetic-field application part applies a static magnetic field to the magnetic pillar. The stress application part applies the stress to the magnetic pillar in order to transfer magnetization states of the magnetic layers in a stacking direction of the magnetic layers.
摘要:
A semiconductor memory device according to one embodiment of the present invention includes a dielectric film configured to store information depending on presence or absence of a conductive path therein, and a plurality of electrodes provided to contact a first surface of the dielectric film. The conductive path can be formed between two electrodes arbitrarily selected form the plurality of electrodes. The conductive path has a rectifying property of allowing a current to flow more easily in a first direction connecting arbitrary two electrodes than in a second direction opposite to the first direction. The largest possible number of the conductive paths that may be formed is larger than the number of the plurality of electrodes.
摘要:
A non-volatile semiconductor storage device includes a plurality of memory strings each having a plurality of electrically rewritable memory cells connected in series. Each of the memory strings comprising: a first semiconductor layer including a columnar portion extending in a vertical direction with respect to a substrate; a plurality of first conductive layers formed to surround side surfaces of the columnar portions via insulation layers, and formed at a certain pitch in the vertical direction, the first conductive layers functioning as floating gates of the memory cells; and a plurality of second conductive layers formed to surround the first conductive layers via insulation layers, and functioning as control electrodes of the memory cells. Each of the first conductive layers has a length in the vertical direction that is shorter than a length in the vertical direction of each of the second conductive layers.