摘要:
In a wiring substrate containing a semiconductor element, the wiring substrate includes a supporting substrate; a semiconductor element provided on the supporting substrate; a peripheral insulating layer covering at least an outer circumferential side surface of the semiconductor element; and upper surface-side wiring provided on the upper surface side of the wiring substrate. The semiconductor element includes a semiconductor substrate; a first wiring-structure layer including first wiring and a first insulating layer alternately formed on the semiconductor substrate; and a second wiring-structure layer including second wiring and a second insulating layer alternately formed on the first wiring-structure layer. The upper surface-side wiring includes fan-out wiring led out from immediately above the semiconductor element to a peripheral region external to an outer edge of the semiconductor element. The fan-out wiring is electrically connected to the first wiring through the second wiring. The second wiring is thicker than the first wiring but thinner than the upper surface-side wiring. The second insulating layer is formed of a resin material and is thicker than the first insulating layer.
摘要:
An object of the present invention is to propose a functional element built-in substrate which enables an electrode terminal of a functional element to be well connected to the back surface on the side opposite to the electrode terminal of the functional element, and which can be miniaturized. According to the present invention, there is provided a functional element built-in substrate including a functional element provided with an electrode terminal on one surface side of the functional element, and a wiring substrate including a laminated structure in which the functional element is embedded so that the electrode terminal of the functional element faces the front surface side of the structure, and which is formed at least in a side surface region of the functional element by laminating a plurality of wiring insulating layers each including a wiring, the functional element built-in substrate being featured in that the electrode terminal and the back surface side of the wiring substrate are electrically connected to each other through the wiring of the laminated structure, and in that, in a pair of the wiring insulating layers included in the laminated structure and that are in contact with each other, the cross-sectional shape of the wiring in each of the wiring insulating layers, which cross-sectional shape is taken along the plane perpendicular to the extension direction of the wiring in the wiring insulating layer, has a relationship that the cross-sectional area of the wiring in the back surface side wiring insulating layer is larger than the cross-sectional area of the wiring in the front surface side wiring insulating layer.
摘要:
A wiring board has an insulating layer, a plurality of wiring layers formed in such a way as to be insulated from each other by the insulating layer, and a plurality of vias formed in the insulating layer to connect the wiring layers. Of the wiring layers, a surface wiring layer formed in one surface of the insulating layer include a first metal film exposed from the one surface and a second metal film embedded in the insulating layer and stacked on the first metal film. Edges of the first metal film project from edges of the second metal film in the direction in which the second metal film spreads. By designing the shape of the wiring layers embedded in the insulating layer in this manner, it is possible to obtain a highly reliable wiring board that can be effectively prevented from side etching in the manufacturing process and can adapt to miniaturization and highly dense packaging of wires.
摘要:
A wiring substrate for mounting semiconductors is provided with an insulation film, wires formed in the insulation film, and a plurality of electrode pads that electrically connect to the wires through vias. The electrode pads are provided to have their surfaces exposed to both of the front surface and the rear surface of the insulation film, and at least a part of the side surface of the electrode pads is buried in the insulation film. The insulation film is formed by forming electrode pads on the respective two metallic plates, thereafter, laminating an insulation layer and wires on the respective metallic plates to cover the electrode pad, and adhering the insulation layers to each other for integration, and thereafter, removing the metallic plates.
摘要:
A transparent board is positioned on a support board provided with a positioning mark, and a release material is provided. A semiconductor element is then positioned so that the electrode element faces upward, and the support board is then removed. An insulating resin is then formed on the release material so as to cover the semiconductor element; and a via, a wiring layer, an insulation layer, an external terminal, and a solder resist are then formed. The transparent board is then peeled from the semiconductor device through the use of the release material. A chip can thereby be mounted with high precision, there is no need to provide a positioning mark during mounting of the chip on the substrate in the manufacturing process, and the substrate can easily be removed. As a result, a semiconductor device having high density and a thin profile can be manufactured at low cost.
摘要:
Semiconductor device has a semiconductor chip embedded in an insulating layer. A semiconductor device comprises a semiconductor chip formed to have external connection pads and a positioning mark that is for via formation; an insulating layer containing a non-photosensitive resin as an ingredient and having a plurality of vias; and wiring electrically connected to the external connection pads through the vias and at least a portion of which is formed on the insulating layer. The insulating layer is formed to have a recess in a portion above the positioning mark. The bottom of the recess is the insulating layer alone. Vias have high positional accuracy relative to the mark.
摘要:
A wiring board has a base insulating film. The base insulating film has a thickness of 20 to 100 μm and is made of a heat-resistant resin which has a glass-transition temperature of 150° C. or higher and which contains reinforcing fibers made of glass or aramid. The base insulating film has the following physical properties (1) to (6) when an elastic modulus at a temperature of T° C. is given as DT (GPa) and a breaking strength at a temperature of T° C. is given as HT (MPa).(1) A coefficient of thermal expansion in the direction of thickness thereof is 90 ppm/K or less. (2) D23≧5 (3) D150≧2.5 (4) (D−65/D150)≦3.0 (5) H23≧140 (6) (H−65/H150)≦2.3