摘要:
Disclosed is an apparatus for generating inductively-coupled plasma (ICP). The ICP generation apparatus includes a source region where an ICP antenna coil is mounted, the ICP antenna coil generating inductive electric fields for generating plasma and having a serially-connected concentric circle-type structure, the total number of windings of the ICP antenna coil being greater than 2, the ICP antenna coil having a structure in which at least one circular winging closest to the center of the concentric circle is wound in a direction opposite to that of the other windings; a sealed chamber in which a predetermined process is performed on a sample placed on a chuck therein through a reaction between plasma ions and reactive radicals; and a radio frequency (RF) power supply for providing RF electric power of a predetermined frequency to the ICP antenna coil in the source region.
摘要:
An elementary plasma source for generating plasma is provided. In the elementary plasma source, first and second magnets are shaped like a hollow cylinder, and the second magnet surrounds the first magnet, for forming a magnetic trap between the first and second magnets. A guide provides microwaves to a space between the first and second magnets.
摘要:
An elementary plasma source for generating plasma is provided. In the elementary plasma source, first and second magnets are shaped like a hollow cylinder, and the second magnet surrounds the first magnet, for forming a magnetic trap between the first and second magnets. A guide provides microwaves to a space between the first and second magnets.
摘要:
Provided is a semiconductor device that may include a switching device having a negative threshold voltage, and a driving unit between a power terminal and a ground terminal and providing a driving voltage for driving the switching device. The switching device may be connected to a virtual ground node having a virtual ground voltage that is greater than a ground voltage supplied from the ground terminal and may be turned on when a difference between the driving voltage and the virtual ground voltage is greater than the negative threshold voltage.
摘要:
An antenna includes branches having substantially identical shapes. The branches are symmetrically disposed about a central point and extend along at least two concentric patterns whose geometric centers coincide with the central point. The branches each include pattern-forming portions that lie entirely within the concentric patterns, and at least one connecting portion extending between and connecting the pattern-forming portions. Input/output terminals for allowing a voltage to be impressed across the branches are provided at ends of each of the branches.
摘要:
High electron mobility transistors (HEMT) exhibiting dual depletion and methods of manufacturing the same. The HEMT includes a source electrode, a gate electrode and a drain electrode disposed on a plurality of semiconductor layers having different polarities. A dual depletion region exists between the source electrode and the drain electrode. The plurality of semiconductor layers includes an upper material layer, an intermediate material layer and a lower material layer, and a polarity of the intermediate material layer is different from polarities of the upper material layer and the lower material layer.
摘要:
An electron cyclotron resonance equipment generates plasma by application of a processing gas and microwave energy into a vacuum chamber having a wafer therein in an environment of reduced pressure. The equipment includes a horn antenna assembly mounted onto an uppermost end of the vacuum chamber for radiating the microwave energy supplied from a high-frequency generator into the vacuum chamber. The horn antenna enables extension and retraction in a lengthwise direction to change a flare angle of the horn antenna. The equipment is provided with a fixed antenna and a plurality of mobile antennas to configure a horn antenna assembly, thereby enabling control of the flare angle in the horn antenna as a result of displacement of the mobile antennas. Thus, the uniformity in radiation of the microwave energy within plasma chamber can be controlled with efficiency.
摘要:
An electron cyclotron resonance equipment generates plasma by application of a processing gas and microwave energy into a vacuum chamber having a wafer therein in an environment of reduced pressure. The equipment includes a horn antenna assembly mounted onto an uppermost end of the vacuum chamber for radiating the microwave energy supplied from a high-frequency generator into the vacuum chamber. The horn antenna enables extension and retraction in a lengthwise direction to change a flare angle of the horn antenna. The equipment is provided with a fixed antenna and a plurality of mobile antennas to configure a horn antenna assembly, thereby enabling control of the flare angle in the horn antenna as a result of displacement of the mobile antennas. Thus, the uniformity in radiation of the microwave energy within plasma chamber can be controlled with efficiency.
摘要:
A sputtering apparatus includes a sputtering chamber, a target disposed in the sputtering chamber, and a magnetic field generator for generating a rotating magnetic field at the front of the target. The magnetic field generator includes a main magnetic field-generating part that faces the back of the target and is horizontally (laterally) offset from a vertical line passing through the center of the target. A magnetic annulus of the main magnetic field-generating part forms a magnetic enclosure having openings therethrough at locations faced in the directions of the central and peripheral portions of the target. The magnetic field-generating part thus produces a magnetic field having a non-uniform distribution at the front of the target. A substrate is positioned within the sputtering chamber facing the front of the target. A metal layer is formed by sputtering atoms from the front of the target onto the substrate. The behavior of the sputtered atoms can be effectively controlled by the magnetic field.
摘要:
Disclosed are a spin transistor and a method of operating the spin transistor. The disclosed spin transistor includes a channel formed of a magnetic material selectively passing a spin-polarized electron having a specific direction, a source formed of a magnetic material, a drain, and a gate electrode. When a predetermined voltage is applied to the gate electrode, the channel selectively passes a spin-polarized electron having a specific direction and thus, the spin transistor is selectively turned on.