摘要:
In an apparatus which positions an average plane thereof parallel to a best focus plane of a projection optical system even if there is unevenness on a wafer, a leveling stage is tilted on the basis of detection signal from an auto-leveling system and a surface of a shot area on a wafer is positioned in a predetermined tilt position relative to a focus plane of the projection optical system. While such a position being kept unchanged, a deviation between the focus plane of the projection optical system and the surface of the shot area is detected at each of multi-points. Within the shot area, by the use of auto-focus system, an amount of relative tilt between an average plane of the shot area obtained from plural deviations and the focus plane of the projection optical system is calculated, and by the use of thus calculated amount of tilt and the detection signal of auto-leveling system, the focus plane of the projection optical system is positioned in parallel with the average plane of the shot area.
摘要:
A plane positioning apparatus comprises a projector for projecting beams to a given portion on the surface of a substrate in a diagonal direction, a light receiving device to receive beams reflected from the substrate surface and output photoelectric signals in accordance with variation of the light receiving position, a calculating circuit to output deviation signals in accordance with the deviation amount of the substrate surface with respect to a predetermined fiducial plane based on the deviation signals, a substrate shifting device to shift and set the substrate at a given position in a direction perpendicular to the fiducial plane in accordance with the deviation signals, a level variation detecting device to detect level variation of the deviation signals generated when the substrate surface and the fiducial plane are displaced interrelatedly, an inclination calculating device to calculate, in accordance with the level variation characteristics, the value of the inclination of the level variation characteristics at a point where the substrate surface and the fiducial plane are substantially matched, and a correction device to correct the allowable range set for the level variation characteristics in order to control the substrate shifting device in accordance with the difference between the inclination value and the fiducial value thus calculated.
摘要:
[Object]To provide a photosensitive siloxane resin composition excellent in alkali-solubility and in sensitivity, and also to provide a pattern-formation method employing that.[Means]The present invention provides a photosensitive siloxane resin composition comprising: a siloxane resin having silanol groups or alkoxysilyl groups, a crown ether, a photosensitive material, and an organic solvent. This photosensitive composition is cast on a substrate, subjected to imagewise exposure, treated with an alkali aqueous solution, and cured to form a pattern.
摘要:
[Object]To provide a coating composition excellent in coatability and free from viscosity increase caused by degradation over time, and also to provide a hardened film-formation method employing that.[Means]The present invention provides a coating composition comprising: a siloxane resin having silanol groups or alkoxysilyl groups, and a polyol having hydroxyl groups at both ends of a straight 2 to 5 carbon atom hydrocarbon chain. This coating composition enables to form a hardened film of high transparency, of high insulation and of low dielectricity.
摘要:
A CVD apparatus for fabricating a titanium nitride thin film is provided. The apparatus comprises an evacuatable reaction vessel having an interior, a pumping apparatus capable of exhausting the reaction vessel and maintaining the interior of the reaction vessel at a prescribed pressure, a gas feeder for introducing a mixed gas into the reaction vessel, a substrate holder in the reaction vessel for holding a substrate to be coated with a titanium nitride thin film, and a heater for heating the substrate. The gas feeder is equipped with the following components: (a) a vaporizer for vaporizing tetrakis(dialkylamino)titanium (TDAAT) from a liquid source material, (b) a first flow controller capable of setting a flow rate of the vaporized TDAAT to any level within a range of 0.004-02 g/min, (c) a second flow controller capable of setting a flow rate of a first carrier gas mixed with the TDAAT to any level within a range of 100-1000 sccm, (d) a third flow controller capable of setting a flow rate of an added gas reactable with the TDAAT to any level within a range of 10-100 sccm, (e) a fourth flow controller capable of setting a flow rate of a second carrier gas being mixed with the added gas to any level within a range of 10-500 sccm, (f) a first supply conduit for mixing the TDAAT and the first carrier gas to create a first mixed gas and guiding the resulting first mixed gas into the reaction vessel, (g) a second supply conduit for mixing the added gas and the second carrier gas to create a second mixed gas and guiding the resulting second mixed gas into the reaction vessel, and (h) a shower head which is provided with a plurality of first nozzles connected to the first supply conduit, and a plurality of second nozzles connected to the second supply conduit, and which is configured such that the first and second mixed gases are fed into the reaction vessel through the nozzles.
摘要:
A method for producing a high-tensile cold-rolled steel sheet includes subjecting a slab having a composition containing C: more than 0.020% and less than 0.30%, Si: more than 0.10% and 3.00% or less, and Mn: more than 1.00% and 3.50% or less to hot rolling wherein the roll draft of the final one pass is higher than 15%, and rolling is finished in the temperature region of Ar3 point or higher, optionally annealing wherein the hot-rolled steel sheet is heated to 300° C. or higher after being cooled to 780° C. or lower, coiling higher than 400° C. or lower than 400° C., cold rolling the hot-rolled steel sheet or the annealed steel sheet, and annealing wherein the cold-rolled steel sheet is soaked in the temperature region of (Ac3 point−40° C.) or higher, cooling to 500° C. or lower and 300° C. or higher, and holding in that temperature region for 30 seconds or longer.
摘要:
A multi-phase hot-rolled steel sheet has a metallurgical structure having a main phase of ferrite with an average grain diameter of at most 3.0 μm and a second phase including at least one of martensite, bainite, and austenite. In the surface layer, the average grain diameter of the second phase is at most 2.0 μm, the difference (ΔnHav) between the average nanohardness of the main phase (nHαav) and the average nanohardness of the second phase (nH2nd av) is 6.0-10.0 GPa, the difference (ΔσnH) of the standard deviation of the nanohardness of the second phase from the standard deviation of the nanohardness of the main phase is at most 1.5 GPa, and in the central portion, the difference (ΔnHav) between the average nanohardnesses is at least 3.5 GPa to at most 6.0 GPa and the difference (ΔσnH) between the standard deviations of the nanohardnesses is at least 1.5 GPa.
摘要:
A high-strength cold-rolled steel sheet excellent in ductility, work hardenability, and stretch flangeability, and having tensile strength of 780 MPa or more includes: a chemical composition containing, in mass percent, C: more than 0.020% to less than 0.30%, Si: more than 0.10% to 3.00% or less, Mn: more than 1.00% to 3.50% or less; and metallurgical structure whose main phase is a low-temperature transformation product, and whose secondary phase contains retained austenite. The retained austenite has a volume fraction relative to overall structure of more than 4.0% to less than 25.0% and an average grain size of less than 0.80 μm, and of the retained austenite, the number density of retained austenite grains whose grain size is 1.2 μm or more is 3.0×10−2 grains/μm2 or less.
摘要:
A multi-phase hot-rolled steel sheet having improved strength in an intermediate strain rate region has a chemical composition comprising, in mass percent, C: 0.07-0.2%, Si+Al: 0.3-1.5%, Mn: 1.0-3.0%, P: at most 0.02%, S: at most 0.005%, Cr: 0.1-0.5%, N: 0.001-0.008%, at least one of Ti: 0.002-0.05% and Nb: 0.002-0.05%, and a remainder of Fe and impurities. The area fraction of ferrite is 7-35%, the grain diameter of ferrite is in the range of 0.5-3.0 μm, and the nanohardness of ferrite is in the range of 3.5-4.5 GPa. A second phase which is the remainder other than ferrite contains martensite and bainitic ferrite and/or bainite. The average nanohardness of the second phase is 5-12 GPa, and the second phase contains a high-hardness phase of 8-12 GPa with an area fraction of 5-35% based on the overall structure.
摘要:
Provided is a transport method comprising judging whether there is a possibility that misalignment greater than or equal to a threshold value occurs between substrates to be layered that are held by a pair of substrate holders aligned and stacked by an aligning section, the misalignment occurring when the pair of substrate holders is transported from the aligning section to a pressure applying section; and if the judgment indicates that there is the possibility of misalignment, transporting the pair of substrate holders to a region other than the pressure applying section. Whether there is the possibility of misalignment may be judged based on acceleration of the substrate holders. Whether there is the possibility of misalignment may be judged based on acceleration of a transporting section that transports the substrate holders. Whether there is the possibility of misalignment may be judged based on relative positions of the substrate holders. Whether there is the possibility of misalignment may be judged based on relative positions of (i) a transporting section that transports the pair of substrate holders and (ii) one of the pair of substrate holders.