摘要:
Polymers synthesized by solid-phase synthesis are selectively released from a solid support by reversing the bias of spatially addressable electrodes. Change in the current and voltage direction at one or more of the spatially addressable electrodes changes the ionic environment which triggers cleavage of linkers that leads to release of the attached polymers. The spatially addressable electrodes may be implemented as CMOS inverters embedded in an integrated circuit (IC). The IC may contain an array of many thousands of spatially addressable electrodes. Control circuitry may independently reverse the bias on any of the individual electrodes in the array. This provides fine-grained control of which polymers are released from the solid support. Examples of polymers that may be synthesized on this type of array include oligonucleotides and peptides.
摘要:
Polymers synthesized by solid-phase synthesis are selectively released from a solid support by reversing the bias of spatially addressable electrodes. Change in the current and voltage direction at one or more of the spatially addressable electrodes changes the ionic environment which triggers cleavage of linkers that leads to release of the attached polymers. The spatially addressable electrodes may be implemented as CMOS inverters embedded in an integrated circuit (IC). The IC may contain an array of many thousands of spatially addressable electrodes. Control circuity may independently reverse the bias on any of the individual electrodes in the array. This provides fine-grained control of which polymers are released from the solid support. Examples of polymers that may be synthesized on this type of array include oligonucleotides and peptides.
摘要:
A microfluidic device includes a plurality of reaction wells; and a plurality of solid supports, and each of the solid supports has a reagent attached thereto. The reagent is attached to the solid support via a labile reagent/support bond such that the reagent is configured to be cleaved from the support via a cleaving operation.
摘要:
The present invention relates to a device (100) and a method for optically controlling a chemical reaction in a reaction chamber (149) comprising a reagent fluid (114). In a preferred embodiment, the chemical reaction comprises a nucleic acid sequencing on a wiregrid. Based on strong optical confinement of excitation light (110) and of cleavage light (112), the sequencing reaction can be read-out. Stepwise sequencing is achieved by using nucleotides with optically cleavable blocking moieties. After read-out the built in nucleotide is deblocked by cleavage light through the same substrate. This ensures that only bound nucleotides will be unblocked. In order to avoid overheating by cleavage light, the reagent fluid is circulated along the surface of the substrate (101).
摘要:
A solid phase reaction method comprising an elongate material of (1) with a substance provided thereon through at least one reaction zone (2) and comprises at least one group for attachment to at least one linker species of said substance. The elongate material (1) may be a cord ribbon, thread or tape.
摘要:
Surface mediated polymer synthesizing methods and related systems and materials are described where monomers are attached to monomer binding regions on a surface and subsequently form chemical bonds with adjacent monomers on the surface to form linear polymers selected from polynucleotide, polypeptides and polysaccharides.
摘要:
There is disclosed a process for in vitro synthesis and assembly of long, gene-length polynucleotides based upon assembly of multiple shorter oligonucleotides synthesized in situ on a microarray platform. Specifically, there is disclosed a process for in situ synthesis of oligonucleotide fragments on a solid phase microarray platform and subsequent, “on device” assembly of larger polynucleotides composed of a plurality of shorter oligonucleotide fragments.
摘要:
The present invention provides compositions and methods to facilitate the identification of compounds that are capable of interacting with a biological macromolecule of interest. In one aspect, a composition is provided that comprises an array of one or more types of chemical compounds attached to a solid support, wherein the density of the array of compounds is at least 1000 spots per cm2. In particularly preferred embodiments, these compounds are attached to the solid support through a covalent interaction. In general, these inventive arrays are generated by: (1) providing a solid support, wherein said solid support is functionalized with a selected chemical moiety capable of interacting with a desired chemical compound to form an attachment; (2) providing one or more solutions of one or more types of compounds to be attached to the solid support; and (3) delivering said one or more types of compounds to the solid support, whereby an array is formed and the array of compounds has a density of at least 1000 spots per cm2. In another aspect, the present invention provides methods for utilizing these arrays to identify small molecule partners for biological macromolecules of interest comprising: (1) providing an array of compounds, wherein the array has a density of at least 1000 spots per cm2; (2) contacting the array with one of more types of biological macromolecules of interest; and (3) determining the interaction of specific small molecule-biological macromolecule partners.
摘要:
A method is disclosed for the direct synthesis of double stranded DNA molecules of a variety of sizes and with any desired sequence. The DNA molecule to be synthesis is logically broken up into smaller overlapping DNA segments. A maskless microarray synthesizer is used to make a DNA microarray on a substrate in which each element or feature of the array is populated by DNA of a one of the overlapping DNA segments. The DNA segments are released from the substrate and held under conditions favoring hybridization of DNA, under which conditions the segments will spontaneously hybridize together to form the desired DNA construct. This method makes possible the remote assembly of DNA sequence, through a process analogous to facsimile transmission of documents, since the information on DNA to be made can be transmitted remotely to an instrument which can then synthesize any needed DNA sequence from the information.