摘要:
There is provided a heating device to independently and/or effectively heat the micro objects manipulated by a micro apparatus/system, for example the droplets of fluids in an electrowetting on dielectric EWOD device of a microfluidic apparatus. The heating device may include a plurality of micro heaters arranged in an array of rows and columns, and the micro heaters of the heating device may be disposed in relative to the electrode elements of the EWOD device, respectively. Therefore, the micro heaters of the heating device may heat one of the electrode elements of the EWOD device, thereby preventing thermal effect of the micro object on the other electrode elements.
摘要:
A microelectromechanical systems die including a thermally conductive substrate, at least one insulator film disposed on the thermally conductive substrate, a sensor material disposed on the at least one insulator film, and a heater circumferentially disposed around the sensor material.
摘要:
A CMOS-MEMS humidity sensor includes a complementary metal oxide semiconductor (CMOS) ASIC readout circuit and a microelectromechanical system (MEMS) humidity sensor. The MEMS humidity sensor is provided on the ASIC readout circuit. The ASIC readout circuit includes a substrate, a heating resistor layer located above the substrate, a metal layer located above the heating resistor layer, and dielectric layers. The substrate, the heating resistor layer, and the metal layer are partitioned by dielectric layers. The MEMS humidity sensor includes an aluminum electrode layer, a passivation layer located above the aluminum electrode layer, and a humidity sensitive layer located above the passivation layer. The provision of heating resistors in the ASIC circuit realizes the heating function and satisfies the requirements of the standard CMOS process, so that the CMOS-MEMS integrated humidity sensor can be used stably under low temperature and high humidity conditions.
摘要:
The present disclosure relates to a microelectromechanical systems (MEMS) device and method for manufacturing the same for improving the uniformity of temperature distribution in a heater unit, and the present disclosure discloses a MEMS device and method for manufacturing the same, including a heater unit that is formed on a substrate, and a dummy pattern unit that is formed in a remaining portion except for a portion where the heater unit is formed so as not to be electrically connected to the heater unit.
摘要:
A MEMS apparatus for thermal energy control including a sensor and an IC chip is provided. The sensor includes a heating device for heating a sensing element and a detecting device for detecting a physical quantity. The IC chip includes a memory unit for storing a target value of the sensing element and a data processing unit for convert the physical quantity to a converted value, where a gap value is defined by subtracting the converted value from the target value. Besides, a control unit of the IC chip sets a parameter value according to the gap value, and a driving unit adjusts a quantity of thermal energy generated by the heating device according to the parameter value to reduce heating time and frequency of the heating device thereby reducing electrical power consumption. The MEMS apparatus is applicable to MEMS sensors requiring controlled operating temperature, such as a gas sensor.
摘要:
A resonator assembly comprising a semiconductor substrate, a resonator gyroscope, the resonator gyroscope including a first resonator formed in a layer of a first material, and an oscillator on the semiconductor substrate, the oscillator including a second resonator formed of a second material, wherein the second resonator is attached in a cavity; the cavity comprising a first recess in said layer of a first material and the edges of the first recess being attached to the substrate, or the cavity comprising a second recess in said substrate and the edges of the second recess being attached to said layer of a first material.
摘要:
A micromachined thermal and mechanical isolator for MEMS die that may include two layers, a first layer with an active temperature regulator comprising a built-in heater and temperature sensor and a second layer having mechanical isolation beams supporting the die. The isolator may be inserted between a MEMS die of a disc resonator gyroscope (DRG) chip and the leadless chip carrier (LCC) package to isolate the die from stress and temperature gradients. Thermal and mechanical stress to the DRG can be significantly reduced in addition to mitigating temperature sensitivity of the DRG chip. The small form can drastically reduce cost and power consumption of the MEMS inertial sensor and enable new applications such as smart munitions, compact and integrated space navigation solutions, with significant potential cost savings over the existing inertial systems.
摘要:
One or more heating elements are provided to heat a MEMS component (such as a resonator) to a temperature higher than an ambient temperature range in which the MEMS component is intended to operate—in effect, heating the MEMS component and optionally related circuitry to a steady-state “oven” temperature above that which would occur naturally during component operation and thereby avoiding temperature-dependent performance variance/instability (frequency, voltage, propagation delay, etc.). In a number of embodiments, an IC package is implemented with distinct temperature-isolated and temperature-interfaced regions, the former bearing or housing the MEMS component and subject to heating (i.e., to oven temperature) by the one or more heating elements while the latter is provided with (e.g., disposed adjacent) one or more heat dissipation paths to discharge heat generated by transistor circuitry (i.e., expel heat from the integrated circuit package).
摘要:
An apparatus for providing localized heating as well as protection for a vibrating MEMS device. A cap over a MEMS gyroscope includes an embedded temperature sensor and a heater. The temperature sensor is a trace made of a material with a known temperature/resistance coefficient, which loops back along itself to reduce electromagnetic interference. The heater is a resistive metal trace which also loops back along itself. The temperature sensor and the heater provide localized temperature stabilization for the MEMS gyroscope to reduce temperature drift in the MEMS gyroscope.
摘要:
A method of patterning a platinum layer includes the following steps. A substrate is provided. A platinum layer is formed on the substrate. An etching process is performed to pattern the platinum layer, wherein an etchant used in the etching process simultaneously includes at least a chloride-containing gas and at least a fluoride-containing gas.