Abstract:
The fuel injection system is provided with a control device for controlling the pilot fuel injection phase to be less than ten percent of the main fuel injection phase. In one embodiment, an injection pump is constructed with a piston having a part with a pair of bevelled edges which control the start and end of injection as well as a tension spring for abruptly moving the piston in the delivery stroke. In another embodiment, a control device includes a rotatable spool which has a cross-bore for communicating cyclically with a pair of radial bores in a surrounding sleeve and which, in turn, communicate with oppositely disposed bores in a casing in order to deliver a flow of pilot fuel during the injection phase.
Abstract:
A needle is forced to open an injection hole by reducing a pressure of fuel in an injection control chamber to thereby inject fuel stored in a fuel storage, while the needle is forced to close the injection hole by increasing the pressure of fuel in the injection control chamber to thereby terminate injection of fuel from the injection hole. In a valve-closing stroke of the needle to close the injection hole, fuel pressure is supplied from a common accumulator to the fuel storage and the injection control chamber in such a manner that the pressure to supply fuel to the fuel storage is lower than that to supply fuel to the injection control chamber. In this way, a force acting on the needle toward the injection hole side can be increased in the valve-closing stroke, to thereby accelerate a valve-closing speed of the needle.
Abstract:
A needle is forced to open an injection hole by reducing a pressure of fuel in an injection control chamber to thereby inject fuel stored in a fuel storage, while the needle is forced to close the injection hole by increasing the pressure of fuel in the injection control chamber to thereby terminate injection of fuel from the injection hole. In a valve-closing stroke of the needle to close the injection hole, fuel pressure is supplied from a common accumulator to the fuel storage and the injection control chamber in such a manner that the pressure to supply fuel to the fuel storage is lower than that to supply fuel to the injection control chamber. In this way, a force acting on the needle toward the injection hole side can be increased in the valve-closing stroke, to thereby accelerate a valve-closing speed of the needle.
Abstract:
A fuel injection system for an internal combustion engine is described, which provides for independent, flexible control of timing as well as quantity of fuel injected. The system is programmable for torque shaping and adaptable to a wide range of engine sizes. It uses piezoelectric valves for controlling injection timing, a shuttle, fuel meter and a gas driven high pressure pump for injecting the fuel into the cylinders.