LOW-POWER CONTACTLESS PHYSIOLOGICAL SENSOR

    公开(公告)号:US20230027668A1

    公开(公告)日:2023-01-26

    申请号:US17787143

    申请日:2020-12-18

    摘要: A system-on-chip contactless physiological sensor (10) is provided which comprises a capacitive-sensor electrode (14) having a first capacitance (C1) and an amplifier device (18) connected to the capacitive-sensor electrode (14), the capacitive-sensor electrode (14) and amplifier device (18) at least in part forming an amplifier circuit for the physiological sensor (10). An artefact-reducing capacitor (20) is then connected in series between the capacitive-sensor electrode (14) and an input of the amplifier device (18), the artefact-reducing capacitor (20) having a second capacitance (C2) which is less than the first capacitance (C1). In this sensor (10), there is no impedance boosting input between the capacitive-sensor electrode (14) and the input of the amplifier device (18).

    Telemetry of wearable medical device information to secondary medical device or system

    公开(公告)号:US11534098B2

    公开(公告)日:2022-12-27

    申请号:US16795193

    申请日:2020-02-19

    摘要: A physiological signal monitoring system includes a single set of sensing electrodes to provide conditioned physiological signals to a primary monitoring device and a secondary monitoring device. The monitoring system includes pre-processing circuitry configured to receive a raw physiological signal. The pre-processing circuitry is configured to produce a primary physiological signal and a secondary physiological signal. Each of the primary and secondary physiological signals are conditioned. The primary conditioned physiological signal is directed to a primary monitoring device such as a hospital wearable defibrillator device. The secondary conditioned physiological signal is directed to telemetry modeling circuitry where it is further processed to output one or more telemetry signals. The one or more telemetry signals are output to a secondary monitoring device such as a three lead ECG monitoring device. Thus, a single set of sensing electrodes can provide physiological signals to multiple monitoring devices.

    Circuitry to assist with neural sensing in an implantable stimulator device

    公开(公告)号:US11040202B2

    公开(公告)日:2021-06-22

    申请号:US16282137

    申请日:2019-02-21

    摘要: Passive tissue biasing circuitry in an Implantable Pulse Generator (IPG) is disclosed to facilitate the sensing of neural responses by holding the voltage of the tissue to a common mode voltage (Vcm). The IPG's conductive case electrode, or any other electrode, is passively biased to Vcm using a capacitor, as opposed to actively driving the (case) electrode to a prescribed voltage using a voltage source. Once Vcm is established, voltages accompanying the production of stimulation pulses will be referenced to Vcm, which eases neural response sensing. An amplifier can be used to set a virtual reference voltage and to limit the amount of current that flows to the case during the production of Vcm. In other examples, circuitry can be used to monitor the virtual reference voltage as useful to enabling the sensing the neural responses, and as useful to setting a compliance voltage for the current generation circuitry.

    RF COIL WITH INTEGRATED VITAL SIGNS DETECTOR

    公开(公告)号:US20230037196A1

    公开(公告)日:2023-02-02

    申请号:US17788318

    申请日:2020-12-22

    摘要: It is an object of the invention to provide a radio frequency (RF) transmit—receive coil (1) for a magnetic resonance (MR) imaging system with an integrated vital signs detector (3) for the detection of vital signs of a patient within the magnetic resonance (MR) imaging system, whereby contact sensors directly attached to the body of the patient, are replaced by a contactless system for monitoring vital signs, which makes it much easier to measure vital signs of the patient. The object is achieved by a RF transmit-receive coil (1) comprising a vital signs detector (3) wherein the vital signs detector (3) is integrated in the RF transmit-receive coil (1), wherein a pair of electrically conducting coil elements (4) of the RF transmit-receive coil (1) forms the vital signs detector (3), wherein the vital signs detector (3) is a capacitive vital signs detector (3), the capacitive vital signs detector (3) being adapted for receiving capacitive vital signs signals. The present invention also concerns a system for the detection of vital signs of a patient within a magnetic resonance (MR) imaging system, a method for operating the system for the detection of vital signs of a patient within a magnetic resonance (MR) imaging system, a software package for a magnetic resonance (MR) imaging system and a software package for upgrading a magnetic resonance (MR) imaging system.