Absorbable bone wax and preparation method thereof

    公开(公告)号:US11890392B2

    公开(公告)日:2024-02-06

    申请号:US17267024

    申请日:2019-12-20

    发明人: Yong Lan Yu Liu Yu Chen

    摘要: Disclosed is absorbable bone wax and a preparation method thereof. The preparation method comprises the steps of: 1) mixing polyoxypropylene polyoxyethylene block copolymer (PEG-PPG-PEG) and polyoxypropylene polyoxyethylene random copolymer (PEG-PPG), and stirring evenly under heating to obtain a liquid mixture; 2) under mechanical stirring and heating condition, adding hemostatic starch microspheres to the liquid mixture obtained in step 1) to obtain a uniformly-mixed liquid; and 3) adding a bone repair material to the uniformly-mixed liquid obtained in step 2), and mixing uniformly to obtain a mixed solution, then pouring the mixed solution into a mold or sub-packaged bottle, and leaving at room temperature for solidifying and shaping to give the absorbable bone wax. The absorbable bone wax of the present invention can achieve the effect of rapid hemostasis, changing the relatively single hemostasis method with traditional bone wax which only depends on physical sealing.

    Protective Starch-based Film and Its Preparation Method and Application

    公开(公告)号:US20230383075A1

    公开(公告)日:2023-11-30

    申请号:US18233375

    申请日:2023-08-14

    摘要: Disclosed are a protective starch-based film and its preparation method and application, belonging to the field of food packaging. According to the method for preparing the protective starch-based film, surfaces of zinc oxide nanoparticles are enabled to adsorb tannic acid and iron ions under the action of metal coordination by controlling the pH to obtain metallic polyphenol network coated zinc oxide nanoparticles, dispersion of the obtained nanoparticles is added to a starch gelatinization solution, and a melanin-like precursor is simultaneously added to form mixed liquid; and by controlling the pH of the mixed solution, π-π stacking, self-polymerization and metal coordination are induced, so that a stable protective starch-based film with a nano-reinforced interpenetrating network structure is formed. The method is simple, green, pollution-free and energy-saving, and the prepared starch-based degradable film has remarkable ultraviolet-shielding, mechanical and antibacterial properties, thus having wide application prospects in the field of food packaging.