Crystal Structure Orientation in Semiconductor Semi-Finished Products and Semiconductor Substrates for Fissure Reduction and Method of Setting Same

    公开(公告)号:US20230349071A1

    公开(公告)日:2023-11-02

    申请号:US18016912

    申请日:2021-06-09

    申请人: SICRYSTAL GMBH

    摘要: Crystal structure orientation in semiconductor semi-finished products and semiconductor substrates for fissure reduction and method of setting same The present invention provides monocrystalline semiconductor semi-finished product and substrates having a predetermined orientation of its crystal structure relative to a central axis and a at least partially curved lateral surface of the semi-finished product or substrate that reduces or even eliminates the occurrence of cracks during mechanical processing, and a method of producing such semiconductor semi-finished products and/or substrates. In the predetermined orientation, a first crystallographic axis perpendicular to a set of first cleavage planes makes a first tilt angle with a plane transverse to the central axis, and a second crystallographic axis perpendicular to a set of second cleavage planes and to the first crystallographic axis makes a second tilt angle with said plane transverse to the central axis so that each set of parallel cleavage planes that are symmetrically equivalent to either the first or second cleavage planes are inclined relative to the central axis.

    SEMICONDUCTOR NANOCRYSTAL PARTICLES, PRODUCTION METHODS THEREOF, AND DEVICES INCLUDING THE SAME

    公开(公告)号:US20230093467A1

    公开(公告)日:2023-03-23

    申请号:US18052597

    申请日:2022-11-04

    摘要: A semiconductor nanocrystal particle, a production method thereof, and a light emitting device including the same. The semiconductor nanocrystal particle includes a core including a first semiconductor nanocrystal, a first shell surrounding the core, the first shell including a second semiconductor nanocrystal including a different composition from the first semiconductor nanocrystal, a second shell surrounding the first shell, the second shell including a third semiconductor nanocrystal including a different composition from the second semiconductor nanocrystal, wherein the first semiconductor nanocrystal includes zinc and sulfur; wherein the third semiconductor nanocrystal includes zinc and sulfur; wherein an energy bandgap of the second semiconductor nanocrystal is less than an energy bandgap of the first semiconductor nanocrystal and less than an energy bandgap of the third semiconductor nanocrystal; and wherein the semiconductor nanocrystal particle does not include cadmium.

    Optimized Heteroepitaxial Growth of Semiconductors

    公开(公告)号:US20230038745A1

    公开(公告)日:2023-02-09

    申请号:US17937840

    申请日:2022-10-04

    发明人: Vladimir Tassev

    摘要: A method of performing heteroepitaxy comprises exposing a substrate to a carrier gas, a first precursor gas, a Group II/III element, and a second precursor gas, to form a heteroepitaxial growth of one of GaAs, AlAs, InAs, GaP, InP, ZnSe, GaSe, CdSe, InSe, ZnTe, CdTe, GaTe, HgTe, GaSb, InSb, AlSb, CdS, GaN, and AlN on the substrate; wherein the substrate comprises one of GaAs, AlAs, InAs, GaP, InP, ZnSe, GaSe, CdSe, InSe, ZnTe, CdTe, GaTe, HgTe, GaSb, InSb, AlSb, CdS, GaN, and AlN; wherein the carrier gas is Hz, wherein the first precursor is HCl, the Group II/III element comprises at least one of Zn, Cd, Hg, Al, Ga, and In; and wherein the second precursor is one of AsH3 (arsine), PH3 (phosphine), H2Se (hydrogen selenide), H2Te (hydrogen telluride), SbH3 (hydrogen antimonide), H2S (hydrogen sulfide), and NH3 (ammonia). The process may be an HVPE (hydride vapor phase epitaxy) process.

    Optimized Heteroepitaxial growth of semiconductors

    公开(公告)号:US11384448B1

    公开(公告)日:2022-07-12

    申请号:US17118848

    申请日:2020-12-11

    发明人: Vladimir Tassev

    摘要: A method of performing heteroepitaxy comprises exposing a substrate to a carrier gas, a first precursor gas, a Group II/III element, and a second precursor gas, to form a heteroepitaxial growth of one of GaAs, AlAs, InAs, GaP, InP, ZnSe, GaSe, CdSe, InSe, ZnTe, CdTe, GaTe, HgTe, GaSb, InSb, AlSb, CdS, GaN, and AlN on the substrate; wherein the substrate comprises one of GaAs, AlAs, InAs, GaP, InP, ZnSe, GaSe, CdSe, InSe, ZnTe, CdTe, GaTe, HgTe, GaSb, InSb, AlSb, CdS, GaN, and AlN; wherein the carrier gas is H2, wherein the first precursor is HCl, the Group II/III element comprises at least one of Zn, Cd, Hg, Al, Ga, and In; and wherein the second precursor is one of AsH3 (arsine), PH3 (phosphine), H2Se (hydrogen selenide), H2Te (hydrogen telluride), SbH3 (hydrogen antimonide), H2S (hydrogen sulfide), and NH3 (ammonia). The process may be an HVPE (hydride vapor phase epitaxy) process.