Abstract:
An advanced transistor with punch through suppression includes a gate with length Lg, a well doped to have a first concentration of a dopant, and a screening region positioned under the gate and having a second concentration of dopant. The second concentration of dopant may be greater than 5 x 10 dopant atoms per cm. At least one punch through suppression region is disposed under the gate between the screening region and the well. The punch through suppression region has a third concentration of a dopant intermediate between the first concentration and the second concentration of dopant. A bias voltage may be applied to the well region to adjust a threshold voltage of the transistor.
Abstract:
An advanced transistor with threshold voltage set dopant structure includes a gate with length Lg and a well doped to have a first concentration of a dopant. A screening region is positioned between the well and the gate and has a second concentration of dopant greater than 5 x 10 18 dopant atoms per cm 3 . A threshold voltage set region is formed by placement of a threshold voltage offset plane positioned above the screening region. The threshold voltage set region may be formed by delta doping and have a thickness between Lg/5 and Lg/1. The structure uses minimal or no halo implants to maintain channel dopant concentration at less than 5 x 10 17 dopant atoms per cm 3 .
Abstract:
A suite of novel structures and methods is provided to reduce power consumption in a wide array of electronic devices and systems Some of these structures and methods can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies As will be discussed, some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced sigma VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors
Abstract:
A method of fabricating semiconductor devices includes providing a semiconducting substrate. The method also includes defining a heavily doped region at a surface of the semiconducting substrate in at least one area of the semiconducting substrate, where the heavily doped region includes a heavily doped layer having a doping concentration greater than a doping concentration of the semiconducting substrate. The method also includes forming an additional layer of semiconductor material on the semiconducting substrate, the additional layer comprising a substantially undoped layer. The method further includes applying a first removal process to the semiconducting substrate to define an unetched portion and an etched portion, where the unetched portion defines a fin structure, and the etched portion extends through the additional layer, and then isolating the fin structure from other structures.
Abstract:
A suite of novel structures and methods is provided to reduce power consumption in a wide array of electronic devices and systems. Some of these structures and methods can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. As will be discussed, some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced aV'r compared to conventional bulk CMOS and can allow the threshold voltage V T of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors.
Abstract:
A suite of novel structures and methods is provided to reduce power consumption in a wide array of electronic devices and systems Some structures and methods can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and nsky switch to alternative technologies Some structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced oVT compared to conventional bulk CMOS and can allow the threshold voltage VT ofFETs having dopants in the channel region to be set more precisely The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors There are many ways to configure the DDC to achieve different benefits
Abstract:
Complementary metal oxide semiconductor transistors are formed on a silicon substrate. The substrate has a {100} crystallographic orientation. The transistors are formed on the substrate so that current flows in the channels of the transistors are parallel to the direction. Additionally, longitudinal tensile stress is applied to the channels.
Abstract:
A system and method to reduce power consumption in electronic devices is disclosed. The structures and methods can be implemented largely by reusing bulk CMOS process flows and manufacturing technology. The structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced sigma VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set more precisely. The DDC design also has a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption.
Abstract:
A packaged semiconductor device (450) includes a semiconductor chip (400) having at least one selectively thinned substrate (cavity) region (410). A package (460) is provided for mounting, enclosing and electrically connecting the chip (400) to the outside world, and structure for applying external stress (470) to induce strain in the thinned substrate region (410). The external stress is preferably adjustable, such as by varying the gas flow (or a vacuum) applied through a pressure valve.
Abstract:
A process for fabricating a source and drain region which includes a more lightly doped source and drain tip region immediately adjacent to the gate and a more heavily doped main portion of the source and drain region spaced apart from the gate. A first layer (16) of glass (2 % BSG) is used to provide the source of doping for the tip region and a second layer (35) of glass (6 % BSG) is used to provide the dopant for the more heavily doped major portion of source and drain regions. Spacers (31) are formed between the glass layers to define the tip region from the main portion of the source and drain regions.