Abstract:
A method of creating an electrical contact involves locating a barrier material at a location for an electrical connection, providing an electrically conductive bonding metal on the barrier material, the electrically conductive bonding metal having a diffusive mobile component, the volume of barrier material and volume of diffusive mobile component being selected such that the barrier material volume is at least 20% of the volume of the combination of the barrier material volume and diffusive mobile component volume. An electrical connection has an electrically conductive bonding metal between two contacts, a barrier material to at least one side of the electrically conductive bonding metal, and an alloy, located at an interface between the barrier material and the electrically conductive bonding metal. The alloy includes at least some of the barrier material, at least some of the bonding metal, and a mobile material.
Abstract:
A method involves forming vias in a device-bearing semiconductor wafer, making at least some of the vias in the device-bearing semiconductor wafer electrically conductive, and performing back-end processing the device-bearing semiconductor wafer so as to create electrical connections between an electrically conductive via and a metalization layer. An alternative method involves forming vias in a device-bearing semiconductor wafer, making at least some of the vias in the device-bearing semiconductor wafer electrically conductive, and processing the device-bearing semiconductor wafer so as to create electrical connections between an electrically conductive via and a conductive semiconductor layer.
Abstract:
A module has at least two ICs connected to each other such that they lie in different planes and are arranged as a first stack of ICs, a third IC is connected to at least one of the at least two ICs, wherein the third IC is off plane from both of the at least two ICs.
Abstract:
A method involves depositing a first electrically conductive material, using a deposition technique, into a via formed in a material, the via having a diameter at a surface of the material of less than about 10µm and a depth of greater than about 50µm, so as to form a seed layer within the via, then creating a thickening layer on top of the seed layer by electrolessly plating the seed layer with a second electrically conductive material without performing any activation process within the via between via formation and the creating the thickening layer, and then electroplating a conductor metal onto the thickening layer until a volume bounded by the thickening layer within the via is filled with the conductor metal.
Abstract:
A packaging method involves attaching a first chip (1002) to a stable base' (600), forming contact pads (902) at locations on the stable base, applying a planarizing medium (1102) onto the stable base such that it electrically insulates sides of the first chip, forming electrical paths (1302, 1304) on the medium, attaching a second chip (1402) to the first chip to form an assembly, and removing the stable base. A package has at least two chips electrically connected to each other, at least one contact pad, an electrically conductive path extending from the contact pad to a contact point on at least one of the chips, a planarizing medium, and a coating material (1502) on top of the planarizing medium.
Abstract:
A method of creating an electrical connection involves providing a pair of contacts each on one of two different chips, the pair of contacts defining a volume therebetween, the volume containing at least two compositions each having melting points, the compositions having been selected such that heating to a first temperature will cause a change in at least one of the at least two compositions such that the change will result in a new composition having a new composition melting point of a second temperature, greater than the first temperature and the melting point of at least a first of the at least two compositions, and heating the pair of contacts and the at least two compositions to the first temperature.
Abstract:
A driver circuit includes a set of selectable drivers each having an individual drive capability, the drivers being selectable such that i) when a subset of the drivers is selected, a signal will be driven by the drivers at a first drive level, and ii) when the subset of the drivers and at least one additional driver is selected, signal will be driven by the drivers at a level that is greater than the first level by a level of drive provided by the least one additional driver.
Abstract:
A method of creating a unified chip involves performing front-end processing on a first wafer, the front end processing creating multiple devices on the wafer, performing back- end processing on a second wafer, the back end processing creating layers of interconnected metal traces arranged to interconnect at least some of the multiple devices to each other, and bonding the first wafer to the second wafer such that the multiple devices on the first wafer are interconnected to each other by the metal traces of the second wafer.
Abstract:
A commercial fiber optic connector of a style constructed to accept a ferrule-like unit therein has optical fibers, each having a first part and a second part separated by lengths, a low precision piece having a peripheral shape of a part of the ferrule like unit, two high precision slices each having fiber holes therein. A chamber separates the two high precision pieces defining a volume therebetween. The optical fibers have their first parts within the fiber holes in one of the high precision slices, their second parts within the fiber holes in the other of the high precision slices, and at least some of their length within the volume. The low precision piece and the two high precision slices collectively form the ferrule like unit and the ferrule like unit is contained substantially within the connector housing. A method of making a commercial optical connector involves making a first plate having holes, each larger than a cross sectional area of an optical fiber; making a second plate having holes each larger than the cross sectional area of the optical fiber; inserting an optical fiber in one of the holes in the first plate and one of the holes in the second plate, forming a ferrule component by connecting each of the first plate and the second plate to a chamber that separates the first plate from the second plate, and inserting the ferrule component in a ferrule location of the commercial optical connector.
Abstract:
A method of physically and electrically joining two chips to each other involves aligning an electrically conductive contact of a first chip with a corresponding electrically conductive contact on a second chip, the electrically conductive contact of the first chip being a rigid material and the electrically conductive contact of the second chip being a material that is malleable, bringing the aligned electrically conductive contact of the first chip into contact with the corresponding electrically conductive contact on the second chip, elevating the contact of the chips to a temperature that is below a liquidus temperature for both the rigid material and the material that is malleable while applying pressure to the chips so as to cause the rigid material to penetrate the malleable material and form an electrically conductive connection, and, following the forming of the electrically conductive connection, cooling the contacts to an ambient temperature.