摘要:
Interconnection elements (550) for electronic components (556), exhibiting desirable mechanical characteristics (such as resiliency), for making pressure contact(s) are formed by shaping a ribbon-like core element (552) of a soft material (such as gold or soft copper) to have a springable shape (including cantilever beam, S-shape, U-shape), and overcoating the shaped core element with a hard material (558) such as nickel and it alloys, to impart a desired spring (resilient) characteristic to the resulting composite interconnection element (550). A final overcoat of a material (220) having superior electrical qualities (e.g., electrical conductivity and/or solderability) may be applied to the composite interconnection element (200). The resulting interconnection elements (500, 550) may be mounted to a variety of electronic components.
摘要:
Deposition of metal in a preferred shape, including coatings (206) on parts (204), or stand-alone materials (300), and subsequent heat treatment (106) to provide improved mechanical properties. In particular, the method gives products with relatively high yield strength. The products often have relatively high elastic modulus, and are thermally stable, maintaining the high yield strength at temperatures considerably above 25 °C. This technique involves depositing a material (206) in the presence of a selected additive, and then subjecting the deposited material to a moderate heat treatment (106). This moderate heat treatment differs from other commonly employed 'stress relief' heat treatments in using lower temperatures and/or shorter times, preferably just enough to reorganize the material to the new, desired form. For example, coating and heat treating a spring-shaped elongate member provides a resilient, conductive contact (212, 920, 1060) useful for electronic applications.
摘要:
Contact tip structures are fabricated on sacrificial substrates for subsequent joining to interconnection elements including composite interconnection elements, monolithic interconnection elements, tungsten needles of probe cards, contact bumps of membrane probes, and the like. The spatial relationship between the tip structures can lithographically be defined to very close tolerances. The metallurgy of the tip structures is independent of that of the interconnection element to which they are attached, by brazing, plating or the like. The contact tip structures are readily provided with topological (small, precise, projecting, non-planar) contact features, such as in the form of truncated pyramids, to optimize electrical pressure connections subsequently being made to terminals of electronic components. Elongate contact tip structures, adapted in use to function as spring contact elements without the necessity of being joined to resilient contact elements are described. Generally, the invention is directed to making (pre-fabricating) relatively 'perfect' contact tip structures ('tips') and joining them to relatively 'imperfect' interconnection elements to improve the overall capabilities of resulting 'tipped' interconnection elements.
摘要:
A plurality of contact elements, such as contact bumps or free-standing spring contacts (710) including both monolithic and composite interconnection elements, are mounted to relatively small tile substrates (702) which, in turn, are mounted and connected to a relatively large electronic component substrate (706), thereby populating the electronic component with a plurality of contact elements while avoiding the necessity of yielding the contact elements directly upon the electronic component. The relatively large electronic component is suitably a space transformer component of a probe card assembly. In this manner, pressure connections can be made to an entire semiconductor wafer, at once, to provide for wafer-level bum-in, and the like. Solder balls, z-axis conductive adhesive, or compliant connections are suitably employed for making electrical connections between the tile substrates and the electronic component. Multiple die sites on a semiconductor wafer are readily probed using the disclosed techniques, and the tiles can be arranged to optimize probing of an entire wafer. Composite interconnection elements having a relatively soft core overcoated by a relatively hard shell, as the resilient contact structures are described. Techniques for maintaining a prescribed x-y and z-axis alignment of the tiles to the relatively large substrate are disclosed.
摘要:
The probe card assembly (500) includes a probe card (502), and a space transformer (506) having resilient contact structures (524) mounted to and extending from terminals (522) on its surface. An interposer (504) is disposed between the space transformer and the probe card. The space transformer and interposer are stacked on the probe card and the resilient contact structures can be arranged to optimise probing of entire wafer.
摘要:
The probe card assembly (500) includes a probe card (502), and a space transformer (506) having resilient contact structures (524) mounted to and extending from terminals (522) on its surface. An interposer (504) is disposed between the space transformer and the probe card. The space transformer and interposer are stacked on the probe card and the resilient contact structures can be arranged to optimise probing of entire wafer.
摘要:
Contact tip structures are fabricated on sacrificial substrates for subsequent joining to interconnection elements including composite interconnection elements, monolithic interconnection elements, tungsten needles of probe cards, contact bumps of membrane probes, and the like. The spatial relationship between the tip structures can lithographically be defined to very close tolerances. The metallurgy of the tip structures is independent of that of the interconnection element to which they are attached, by brazing, plating or the like. The contact tip structures are readily provided with topological (small, precise, projecting, non-planar) contact features, such as in the form of truncated pyramids, to optimize electrical pressure connections subsequently being made to terminals of electronic components. Elongate contact tip structures, adapted in use to function as spring contact elements without the necessity of being joined to resilient contact elements are described. Generally, the invention is directed to making (pre-fabricating) relatively 'perfect' contact tip structures ('tips') and joining them to relatively 'imperfect' interconnection elements to improve the overall capabilities of resulting 'tipped' interconnection elements.