Abstract:
Spring contact elements are fabricated by depositing at least one layer of metallic material into openings defined on a sacrificial substrate. The openings may be within the surface of the substrate, or in one or more layers deposited on the surface of the sacrificial substrate. Each spring contact element has a base end portion, a contact end portion, and a central body portion. The contact end portion is offset in the z-axis (at a different height) than the central body portion. The base end portion is preferably offset in an opposite direction along the z-axis from the central body portion. In this manner, a plurality of spring contact elements are fabricated in a prescribed spatial relationship with one another on the sacrificial substrate. The spring contact elements are suitably mounted by their base end portions to corresponding terminals on an electronic component, such as a space transformer or a semiconductor device, whereupon the sacrificial substrate is removed so that the contact ends of the spring contact elements extend above the surface of the electronic component. In an exemplary use, the spring contact elements are thereby disposed on a space transformer component of a probe card assembly so that their contact ends effect pressure connections to corresponding terminals on another electronic component, for the purpose of probing the electronic component.
Abstract:
Products and assemblies are provided for socketably receiving elongate interconnection elements, such as spring contact elements, extending from electronic components, such as semiconductor devices. Socket substrates are provided with capture pads for receiving ends of elongate interconnection elements extending from electronic components. Various capture pad configurations are disclosed. A securing device such as a housing positions the electronic component securely to the socket substrate. Connections to external devices are provided via conductive traces adjacent the surface of the socket substrate. The socket substrate may be supported by a support substrate. In a particularly preferred embodiment the capture pads are formed directly on a primary substrate such as a printed circuit board.
Abstract:
Deposition of metal in a preferred shape, including coatings (206) on parts (204), or stand-alone materials (300), and subsequent heat treatment (106) to provide improved mechanical properties. In particular, the method gives products with relatively high yield strength. The products often have relatively high elastic modulus, and are thermally stable, maintaining the high yield strength at temperatures considerably above 25 °C. This technique involves depositing a material (206) in the presence of a selected additive, and then subjecting the deposited material to a moderate heat treatment (106). This moderate heat treatment differs from other commonly employed 'stress relief' heat treatments in using lower temperatures and/or shorter times, preferably just enough to reorganize the material to the new, desired form. For example, coating and heat treating a spring-shaped elongate member provides a resilient, conductive contact (212, 920, 1060) useful for electronic applications.
Abstract:
Contact tip structures are fabricated on sacrificial substrates for subsequent joining to interconnection elements including composite interconnection elements, monolithic interconnection elements, tungsten needles of probe cards, contact bumps of membrane probes, and the like. The spatial relationship between the tip structures can lithographically be defined to very close tolerances. The metallurgy of the tip structures is independent of that of the interconnection element to which they are attached, by brazing, plating or the like. The contact tip structures are readily provided with topological (small, precise, projecting, non-planar) contact features, such as in the form of truncated pyramids, to optimize electrical pressure connections subsequently being made to terminals of electronic components. Elongate contact tip structures, adapted in use to function as spring contact elements without the necessity of being joined to resilient contact elements are described. Generally, the invention is directed to making (pre-fabricating) relatively 'perfect' contact tip structures ('tips') and joining them to relatively 'imperfect' interconnection elements to improve the overall capabilities of resulting 'tipped' interconnection elements.
Abstract:
The probe card assembly (500) includes a probe card (502), and a space transformer (506) having resilient contact structures (524) mounted to and extending from terminals (522) on its surface. An interposer (504) is disposed between the space transformer and the probe card. The space transformer and interposer are stacked on the probe card and the resilient contact structures can be arranged to optimise probing of entire wafer.
Abstract:
The probe card assembly (500) includes a probe card (502), and a space transformer (506) having resilient contact structures (524) mounted to and extending from terminals (522) on its surface. An interposer (504) is disposed between the space transformer and the probe card. The space transformer and interposer are stacked on the probe card and the resilient contact structures can be arranged to optimise probing of entire wafer.
Abstract:
A base controller (210) disposed in a test cassette (110) receives test data for testing a plurality of electronic devices (236a,236b). The base controller wirelessly transmits the test data to a plurality of wireless test control chips (214a,214b,214c,214d,214e,214f,214g), which write the test data to each of the electronic devices. The wireless test control chips (214a,214b,214c,214d,214e,214f,214g), then read response data generated by the electronic devices (236a, 236b), and the wireless test control chips wirelessly transmit the response data to the base controller (210).
Abstract:
An apparatus and method providing improved interconnection elements and tip structures for effecting pressure connections between terminals of electronic components is described. The tip structure of the present invention has a sharpened blade oriented on the upper surface of the tip structure such that the length of the blade is substantially parallel to the direction of horizontal movement of the tip structure as the tip structure deflects across the terminal of an electronic component. In this manner, the sharpened substantially parallel oriented blade slices cleanly through any non-conductive layer(s) on the surface of the terminal and provides a reliable electrical connection between the interconnection element and the terminal of the electrical component.
Abstract:
The probe card assembly (500) includes a probe card (502), and a space transformer (506) having resilient contact structures (524) mounted to and extending from terminals (522) on its surface. An interposer (504) is disposed between the space transformer and the probe card. The space transformer and interposer are stacked on the probe card and the resilient contact structures can be arranged to optimise probing of entire wafer.
Abstract:
An interconnection contact structure assembly including an electronic component (102) having a surface and a conductive contact terminal (103) carried by the electronic component (102) and accessible at the surface. The contact structure (101) includes an internal flexible elongate member (106) having first (107) and second ends (108) and with the first end (107) forming a first intimate bond to the surface of the conductive contact terminal (103) without the use of a separate bonding material. An electrically conductive shell (116) is provided and is formed of at least one layer of a conductive material enveloping the elongate member (106) and forming a second intimate bond with at least a portion of the conductive contact terminal immediately adjacent the first intimate bond.