Abstract:
Disclosed are a microelectronic assembly of two elements and a method of forming same. A microelectronic element includes a major surface, and a dielectric layer and at least one bond pad exposed at the major surface. The microelectronic element may contain a plurality of active circuit elements. A first metal layer is deposited overlying the at least one bond pad and the dielectric layer. A second element having a second metal layer deposited thereon is provided, and the first metal layer is joined with the second metal layer. The assembly may be severed along dicing lanes into individual units each including a chip.
Abstract:
A microelectronic unit 12 includes a substrate 20 and an electrically conductive element 40. The substrate 20 can have a CTE less than 10 ppm/°C, a major surface 21 having a recess 30 not extending through the substrate, and a material 50 having a modulus of elasticity less than 10 GPa disposed within the recess. The electrically conductive element 40 can include a joining portion 42 overlying the recess 30 and extending from an anchor portion 41 supported by the substrate 20. The joining portion 42 can be at least partially exposed at the major surface 21 for connection to a component 14 external to the microelectronic unit 12.
Abstract:
A microelectronic assembly can include first and second microelectronic elements each embodying active semiconductor devices adjacent a front surface thereof, and having an electrically conductive pad exposed at the respective front surface. An interposer of material having a CTE less than 10 ppm/° C. has first and second surfaces attached to the front surfaces of the respective first and second microelectronic elements, the interposer having a second conductive element extending within an opening in the interposer. First and second conductive elements extend within openings extending from the rear surface of a respective microelectronic element of the first and second microelectronic elements towards the front surface of the respective microelectronic element. In one example, one or more of the first or second conductive elements extends through the respective first or second pad, and the conductive elements contact the exposed portions of the second conductive element to provide electrical connection therewith.
Abstract:
A microelectronic assembly is provided in which first and second electrically conductive pads exposed at front surfaces of first and second microelectronic elements, respectively, are juxtaposed, each of the microelectronic elements embodying active semiconductor devices. An electrically conductive element may extend within a first opening extending from a rear surface of the first microelectronic element towards the front surface thereof, within a second opening extending from the first opening towards the front surface of the first microelectronic element, and within a third opening extending through at least one of the first and second pads to contact the first and second pads. Interior surfaces of the first and second openings may extend in first and second directions relative to the front surface of the first microelectronic element, respectively, to define a substantial angle.
Abstract:
A method of bonding first and second microelectronic elements includes pressing together a first substrate 100 containing active circuit elements 108 therein with a second substrate 112, with a flowable dielectric material 102 between confronting surfaces of the respective substrates, each of the first and second substrates 100,112 having a coefficient of thermal expansion less than 10 parts per million/ °C, at least one of the confronting surfaces having a plurality of channels 118A-118F extending from an edge of such surface, such that the dielectric material 102 between planes defined by the confronting surfaces is at least substantially free of voids and has a thickness over one micron, and at least some of the dielectric material 102 flows into at least some of the channels.
Abstract:
A microelectronic assembly is provided which includes a first element consisting essentially of at least one of semiconductor or inorganic dielectric material having a surface facing and attached to a major surface of a microelectronic element at which a plurality of conductive pads are exposed, the microelectronic element having active semiconductor devices therein. A first opening extends from an exposed surface of the first element towards the surface attached to the microelectronic element, and a second opening extends from the first opening to a first one of the conductive pads, wherein where the first and second openings meet, interior surfaces of the first and second openings extend at different angles relative to the major surface of the microelectronic element. A conductive element extends within the first and second openings and contacts the at least one conductive pad.
Abstract:
A microelectronic unit, microelectronic element, e g, an integrated circuit chip, having a semiconductor region of monocrystalline form. The semiconductor region has a front surface extending in a first direction, an active circuit element adjacent the front surface, a rear surface remote from the front surface and a conductive which extends towards the rear surface The conductive can be insulated from the semiconductor region by an inorganic dielectric layer An opening can extend from the rear surface partially through a thickness of the semiconductor region, with the opening and the conductive via having respective widths, in the first direction The width of the opening may be greater than the width of the conductive via where the opening meets the conductive via A rear contact can be electrically connected to the conductive and exposed at the rear surface for electrical connection with an external circuit element.