Abstract:
A lithographic apparatus includes a substrate table constructed to hold a substrate, a projection system configured to project a patterned radiation beam through an opening and onto a target portion of the substrate, and a conduit having an outlet in the opening. The conduit is configured to deliver gas to the opening. The lithographic apparatus further includes a cooling apparatus controlled by a control system. The cooling apparatus is configured to cool the gas such that gas which travels from the opening to the substrate has a predetermined temperature when the gas is incident upon the substrate.
Abstract:
A method for calibrating an encoder in a lithographic apparatus, the encoder including a sensor and a grating, the encoder configured to measure a position of a moveable support of the lithographic apparatus, the method including measuring a position of the moveable support using an interferometer; and calibrating the encoder based on the position of the moveable support measured by the interferometer.
Abstract:
A method for calibrating an encoder in a lithographic apparatus, the encoder including a sensor and a grating, the encoder configured to measure a position of a moveable support of the lithographic apparatus, the method including measuring a position of the moveable support using an interferometer; and calibrating the encoder based on the position of the moveable support measured by the interferometer.
Abstract:
An immersion lithographic apparatus is described with a drain configured to remove liquid from a gap between an edge of the substrate and the substrate table on which the substrate is supported. The drain is provided with a means to provide liquid to the drain irrespective of the position of the substrate table and/or a means to saturate gas within the drain. Those measures reduce the variations in heat load due to evaporation of liquid in the drain.
Abstract:
A method is used to calibrate a target surface of a position measurement system configured to measure a position of a movable object. The position measurement system includes the target surface mounted on the movable object, a stationary sensor system, and a processing device to calculate a position of the movable object on the basis of at least one measurement signal of the sensor system. The processing device includes a correction map of the target surface to correct for irregularities of the target surface. The method includes recalibrating the correction map of the target surface by measuring the target surface and determining a recalibrated correction map of the complete target surface on the basis of the measured target surface and one or more deformation modes of the target surface and/or physical objects affecting the target surface.
Abstract:
A radiation beam modification apparatus for controlling a property of a beam of radiation in a lithographic apparatus includes a flexible sheet provided with a plurality of apertures, and a positioning apparatus comprising a first rotatable member and a second rotatable member, wherein a first end portion of the flexible sheet is coupled to the first rotatable member, a second end portion of the flexible sheet is coupled to the second rotatable member and a central portion of the flexible sheet extends between the first rotatable member and the second rotatable member. The apertures may be used to control the numerical aperture of a projection system of a lithographic apparatus.
Abstract:
A projection system includes at least one projection device configured to receive a beam of radiation coming from a first object and project the beam to a second object. The projection system further includes a sensor configured to measure a spatial orientation of the at least one projection device and a processing unit configured to communicate with the at least one sensor. The processing unit is configured to communicate with a positioning device configured to adjust the position of at least one of the first object and the second object based on the measured spatial orientation of the at least one projection device.
Abstract:
A method according to one embodiment of the invention may be performed using a calibration plate having at least one alignment marker and at least one height profile. First, the calibration plate is positioned using an alignment sensor. Then the height profile is measured by a height sensor. Then the calibration plate is rotated by substantially 180 degrees and the two operations are repeated. This procedure results in two measured height profiles, which are compared in order to find a best fit. The amount of shift performed to find the best fit is used to determine a distance between the alignment marker and the X,Y position of the measurement point of the height sensor.
Abstract:
A method for calibrating a lithographic projection apparatus includes identifying a set of two or more reference positions of one a first and a second object table WTa, WTb or MT with a first detection system and simultaneously measuring those reference positions with a first position measuring system, identifying the same set of reference positions of said one object table with a second detection system and simultaneously measuring those reference positions with a second position measuring system, and correlating said first and said second position measuring systems using the measurements of the reference positions.
Abstract:
An immersion lithographic apparatus is described with a drain configured to remove liquid from a gap between an edge of the substrate and the substrate table on which the substrate is supported. The drain is provided with a means to provide liquid to the drain irrespective of the position of the substrate table and/or a means to saturate gas within the drain. Those measures reduce the variations in heat load due to evaporation of liquid in the drain.