Abstract:
Pixel sensor cells, e.g., CMOS optical imagers, methods of manufacturing and design structures are provided with isolation structures that prevent carrier drift to diffusion regions. The pixel sensor cell includes a photosensitive region and a gate adjacent to the photosensitive region. The pixel sensor cell further includes a diffusion region adjacent to the gate. The pixel sensor cell further includes an isolation region located below a channel region of the gate and about the photosensitive region, which prevents electrons collected in the photosensitive region to drift to the diffusion region.
Abstract:
A method of preventing blooming in a pixel array includes affecting an amount of light that impinges on a photoelectric conversion element by adjusting a transmissivity of an electrochromic element based on an output of the photoelectric conversion element.
Abstract:
A design structure for an integrated radio frequency (RF) filter on a backside of a semiconductor substrate includes: a device on a first side of a substrate; a radio frequency (RF) filter on a backside of the substrate; and at least one substrate conductor extending from the front side of the substrate to the backside of the substrate and electrically coupling the RF filter to the device.
Abstract:
Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed to be in contact with at least one piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam in which, upon actuation, the MEMS beam will turn on the at least one piezoelectric filter structure by interleaving electrodes in contact with the piezoelectric substrate or sandwiching the at least one piezoelectric substrate between the electrodes.
Abstract:
Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a fixed electrode with a plurality of fingers on the piezoelectric substrate. The method further includes forming a moveable electrode with a plurality of fingers over the piezoelectric substrate. The method further includes forming actuators aligned with one or more of the plurality of fingers of the moveable electrode.
Abstract:
Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam formed above the piezoelectric substrate and at a location in which, upon actuation, the MEMS beam shorts the piezoelectric filter structure by contacting at least one of the plurality of electrodes.
Abstract:
Manufacturing a semiconductor structure including modifying a frequency of a Film Bulk Acoustic Resonator (FBAR) device though a vent hole of a sealing layer surrounding the FBAR device.