Abstract:
A bulk acoustic wave resonator includes a substrate, a lower electrode connection member, a lower electrode, a piezoelectric layer, an upper electrode, an upper electrode connection member, and a dielectric layer in which the lower electrode, the piezoelectric layer, and the upper electrode are embedded. The lower electrode, the piezoelectric layer, and the upper electrode constitute a resonant portion. An extension portion extends away from either the lower electrode or the upper electrode to protrude outwardly from the resonant portion. A capacitor portion is constituted by the extension portion, a portion of the upper electrode connection member disposed above the extension portion, and a portion of the dielectric layer disposed between the extension portion and the portion of the upper electrode connection member disposed above the extension portion.
Abstract:
A method of designing an acoustic microwave filter comprises generating a proposed filter circuit design having an acoustic resonant element with a defined admittance value, introducing a lumped capacitive element in parallel and a lumped inductive element in series with the resonant element, selecting a first capacitance value for the capacitive element and a first inductance value for the inductive element, thereby creating a first temperature modeled filter circuit design, simulating the first temperature modeled filter circuit design at a first operating temperature, thereby generating a first frequency response, selecting a second capacitance value for the capacitive element and a second inductance value for the inductive element, thereby creating a second temperature modeled filter circuit design, simulating the second temperature modeled filter circuit design at a second operating temperature, thereby generating a second frequency response, and comparing the first and second frequency responses to the frequency response requirements.
Abstract:
A method of designing an acoustic microwave filter comprises generating a proposed filter circuit design having an acoustic resonant element with a defined admittance value, introducing a lumped capacitive element in parallel and a lumped inductive element in series with the resonant element, selecting a first capacitance value for the capacitive element and a first inductance value for the inductive element, thereby creating a first temperature modeled filter circuit design, simulating the first temperature modeled filter circuit design at a first operating temperature, thereby generating a first frequency response, selecting a second capacitance value for the capacitive element and a second inductance value for the inductive element, thereby creating a second temperature modeled filter circuit design, simulating the second temperature modeled filter circuit design at a second operating temperature, thereby generating a second frequency response, and comparing the first and second frequency responses to the frequency response requirements.
Abstract:
An acoustic wave device comprising at least one surface acoustic wave filter and one bulk acoustic wave filter, the device including, on a substrate comprising a second piezoelectric material: a stack of layers including a first metal layer and a layer of a first monocrystalline piezoelectric material, wherein the stack of layers is partially etched so as to define a first area in which the first and second piezoelectric materials are present and a second area in which the first piezoelectric material is absent; a second metallization at the first area for defining the bulk acoustic wave filter integrating the first piezoelectric material, and a third metallization at the second area for defining the surface acoustic wave filter integrating the second piezoelectric material.
Abstract:
A film bulk acoustic device having integrated trimmable device comprises a FBAR and a integrated tunable and trimmable device being integrated on a common substrate, at least a common electrode or piezoelectric layer. By trimming the integrated trimmable device or the FBAR and alter either the capacitance or inductance of the integrated trimmable device until the film bulk acoustic device having integrated trimmable device achieves the target resonance frequency. By taking advantage of the electrostatic force, the integrated tunable device is capable of providing tuning until the film bulk acoustic device having integrated tunable device achieves the target resonance frequency.
Abstract:
Provided is a method for manufacturing a surface acoustic wave apparatus that can reduce degradation of electric characteristics and also reduce the number of manufacturing processes. The method for manufacturing a surface acoustic wave apparatus includes the steps of: forming an IDT electrode on an upper surface of a piezoelectric substrate, forming a frame member surrounding a formation area in which the IDT electrode is formed on the piezoelectric substrate, and mounting a film-shaped lid member on the upper surface of the frame member so as to be joined to the frame member so that a protective cover, used for covering the formation area and for providing a tightly-closed space between it and the formation area, is formed.
Abstract:
In accordance with a representative embodiment, a method of fabricating a piezoelectric material comprising a first component and a second component comprises: providing a substrate; flowing hydrogen over the substrate; flowing the first component to form the piezoelectric material over a target; and sputtering the piezoelectric material from the target on the substrate. In accordance with another representative embodiment, a method of fabricating a bulk acoustic wave (BAW) resonator comprises: forming a first electrode over a substrate; forming a seed layer over the substrate; and depositing a piezoelectric material having a compression-negative (CN) polarity. The depositing of the piezoelectric material comprises: flowing a first component of the piezoelectric material to form the piezoelectric material over a target comprising a second component of the piezoelectric material; and sputtering the piezoelectric material from the target to the substrate.
Abstract:
A multi-band filter module and a method of fabricating the same are provided. The multi-band filter module includes a piezoelectric substrate, a first filter provided on the piezoelectric substrate, and a second filter provided adjacent to the first filter on the piezoelectric substrate, and operating in a frequency band that is lower than that of the first filter.
Abstract:
A film bulk acoustic device having integrated trimmable device comprises a FBAR and a integrated tunable and trimmable device being integrated on a common substrate, at least a common electrode or piezoelectric layer. By trimming the integrated trimmable device or the FBAR and alter either the capacitance or inductance of the integrated trimmable device until the film bulk acoustic device having integrated trimmable device achieves the target resonance frequency. By taking advantage of the electrostatic force, the integrated tunable device is capable of providing tuning until the film bulk acoustic device having integrated tunable device achieves the target resonance frequency.
Abstract:
A thin film acoustic wave device and the manufacturing method thereof, it provides a method of manufacturing acoustic wave devices of different FOM (figures of merit) by means of the crystalline orientation of the piezoelectric layer in cooperated with the various electric field directions of the driving electrode, so as to provide acoustic wave devices that are optimized under various specifications.