摘要:
Described herein are methods of identifying a transmembrane receptor (TMR) agonist and compounds identified by this method. The TMR agonist (TMRA) is capable of activating TMR signaling while exhibiting reduced TMR internalization over a control compound.
摘要:
Isoquinoline compounds with G are provided that influence, inhibit or reduce the action of a G-protein receptor kinase. Pharmaceutical compositions including therapeutically effective amounts of the isoquinoline compounds and pharmaceutically acceptable carriers are also provided. Various methods using the compounds and/or compositions to affect disease states or conditions such as cancer, osteoporosis and glaucoma are also provided.
摘要:
Isoquinoline compounds with G are provided that influence, inhibit or reduce the action of a G-protein receptor kinase. Pharmaceutical compositions including therapeutically effective amounts of the isoquinoline compounds and pharmaceutically acceptable carriers are also provided. Various methods using the compounds and/or compositions to affect disease states or conditions such as cancer, osteoporosis and glaucoma are also provided.
摘要:
Isoquinoline compounds with G are provided that influence, inhibit or reduce the action of a G-protein receptor kinase. Pharmaceutical compositions including therapeutically effective amounts of the isoquinoline compounds and pharmaceutically acceptable carriers are also provided. Various methods using the compounds and/or compositions to affect disease states or conditions such as cancer, osteoporosis and glaucoma are also provided.
摘要:
A method of inoculating a culture medium including providing a droplet including a single cell type on a droplet actuator and inoculating a culture medium with the droplet. A method of providing a metabolically useful substance to a cell culture, including providing a droplet actuator including a cell culture droplet loaded thereon, the sample droplet including cells and a cell culture medium, and a second droplet comprising a metabolically useful substance. The method also includes conducting one or more droplet operations to combine the cell culture droplet with the second droplet on the droplet actuator. Related methods, droplet actuators, and systems are also provided.
摘要:
The invention is directed to certain droplet actuated molecular techniques. In one embodiment, the invention provides droplet actuator methods for detection of single nucleotide polymorphisms (SNPs) in a DNA sequence using digital microfluidics, including droplet actuator-based sample preparation and SNP analysis. In another embodiment, the invention provides droplet actuator devices and methods for providing integrated sample preparation and multiplexed detection of an infectious agent, such as HIV. In yet another embodiment, the invention provides droplet actuator devices and techniques for PCR amplification and detection of specific nucleic acid sequences using digital microfluidics, including droplet actuator-based sample preparation and target nucleic acid analysis. In yet another embodiment the invention provides methods for performing hot-start PCR on a droplet actuator. In yet another embodiment, the method of the invention combines PCR amplification with pyrosequencing to investigate specific sequences.
摘要:
The systems and methods of the invention provide a guided approach to pyrosequencing (i.e., hybrid pyrosequencing). A de novo nucleic acid sequence may compared to a library of possible results and the next nucleotide to be dispensed is selected based on the comparison of the de novo sequence and the library of possible results. In another example, at least the first nucleotide to be dispensed is selected based on a query of a database(s) of non-sequence parameters (e.g., incidence of infection, diagnostic symptoms, sample source) and subsequent dispensations determined based on a comparison of the de novo sequence and the library of possible results (e.g., candidate sequences). The systems and methods of the invention may be performed using a droplet actuator.
摘要:
The invention relates to certain novel approaches to reducing or eliminating the movement of contaminants from one droplet to another on a droplet actuator via liquid filler fluid. In one application, droplet actuators are used to conduct genetic analysis using polymerase chain reaction (PCR) techniques. The invention addresses the need for improved methods of performing PCR on a droplet actuator that provide for optimum amplification and detection of a sample target.
摘要:
The present invention relates to droplet-based surface modification and washing. According to one embodiment, a method of providing a bead-containing droplet with a reduced concentration of a substance is provided, the method including providing a droplet microactuator including a droplet having a starting volume and including one or more beads and a starting concentration and starting quantity of the substance. The method further includes conducting one or more droplet operations to merge a wash droplet with the droplet provided in the above step to yield a combined droplet and including one or more droplet operations to divide the combined droplet to yield a set of droplets including a droplet including substantially all of the one or more beads and having a decreased concentration of the substance relative to the starting concentration and a droplet which is substantially lacking in the beads.
摘要:
A method of sorting beads on a droplet actuator. The method may, for example, include the following steps: (a) providing a droplet actuator comprising a substrate comprising electrodes arranged for conducting droplet operations on a substrate surface; (b) providing an assay droplet on the substrate surface, the droplet comprising two or more target-capture bead populations comprising target-capture beads comprising: (i) a capture probe bound to a target substance; and (ii) a unique bar binding element which binds to a corresponding binder; (c) using droplet operations to combine the assay droplet with a bead-capture droplet comprising one or more bead-capture beads having affinity for the binding element; (d) immobilizing the one or more bead-capture beads while conducting droplet operations to separate the bead-capture beads from unbound target-capture beads; (e) resuspending the one or more bead-capture beads in a droplet, thereby providing a droplet comprising a substantially pure substance-capture bead population; and (f) using droplet operations to conduct one or more protocol steps for an assay protocol.