Abstract:
A process of treating a coated article and a treated article are disclosed. The process includes providing an article having a MCrAlY coating, applying an aluminide treatment onto the MCrAlY coating to form a treated MCrAlY coating, and outwardly forming β-phase material from the MCrAlY coating into the treatment. The applying is selected from the group consisting of soaking, spraying, brushing, dipping, pouring, pack cementation, vapor deposition, and combinations thereof. The treated article includes a substrate and a treated MCrAlY coating positioned on at least a portion of the substrate. The treated MCrAlY coating includes a β-phase aluminide in a spray-applied, brush-applied, pour-applied, dip-applied, pack cement-applied, vapor deposit-applied, or soaking-applied treatment.
Abstract:
A method of welding using a weld filler additive and a weld filler additive are provided. The method includes the step of welding the component with a filler additive comprising a sufficient amount of each of Co, Cr, Al, Ti, Mo, Fe, B, C, Nb, and Ni, the component including a hard-to-weld base alloy. The method further includes the step of forming an easy-to-weld target alloy on a surface of the component from the welding.
Abstract:
A fabricated article includes a substrate and one or more turbulators formed on the substrate. Each of the one or more turbulators includes at least one root portion providing a concave transition between the substrate and the turbulator. In some embodiments, the fabricated article is formed by a turbulator fabrication process. The turbulator fabrication process includes concurrently directing the first fusion energy toward a first side of the turbulator material extending from the substrate and the second fusion energy toward a second side of the turbulator material opposite the first side and extending from the substrate. The directing of the first fusion energy and the second fusion energy shapes the first side of the turbulator material to have a first contour and the second side of the turbulator material to have a second contour, thereby forming the one or more turbulators on the substrate.
Abstract:
A process for forming a diffusion coating on a substrate is disclosed, including preparing a slurry including a donor metal powder, an activator powder, and a binder, and applying the slurry to the substrate. The slurry is dried on the substrate, forming a slurry layer on the substrate. A covering composition is applied over the slurry layer, and the covering composition is dried, forming at least one covering layer enclosing the slurry layer against the substrate. The slurry layer and the at least one covering layer are heated to form the diffusion coating on the substrate, the diffusion coating including an additive layer and an interdiffusion zone disposed between the substrate and the additive layer.
Abstract:
A turbulator fabrication process and a fabricated article are provided. The turbulator fabrication process includes providing a system configured for directing a first fusion energy and a second fusion energy, positioning a turbulator material on a substrate, and directing the first fusion energy and the second fusion energy toward the turbulator material and the substrate. The directing of the first fusion energy and the second fusion energy modifies the turbulator material forming one or more turbulators on the substrate. The fabricated article includes a substrate and one or more turbulators formed on the substrate. Each of the one or more turbulators includes at least one root portion providing a concave transition between the substrate and the turbulator.
Abstract:
A method of welding using a weld filler additive and a weld filler additive are provided. The method includes the step of welding the component with a filler additive comprising a sufficient amount of each of W, Co, Cr, Al, Ti, Mo, Fe, B, C, Nb, and Ni, the component including a hard-to-weld base alloy. The method further includes the step of forming an easy-to-weld target alloy on a surface of the component from the welding.
Abstract:
A coating method is disclosed including disposing a coating composition into a fluidly communicating space defined by an internal surface of an article. The fluidly communicating space includes at least one aperture, which is sealed, forming an enclosed space. The internal surface and the coating composition are heated under autogenous pressure, coating the internal surface with the coating composition. The at least one aperture is unsealed, re-forming the fluidly communicating space. Another coating method is disclosed in which the coating composition is disposed into a reservoir which is connected in fluid communication with the enclosed space prior to heating under autogenous pressure, coating the internal surface with the coating composition. Yet another coating method is disclosed in which the coating composition and the article are disposed in a vessel, which is sealed, forming the enclosed space prior to heating under autogenous pressure, coating the internal surface with the coating composition.
Abstract:
A coating method is disclosed including forming a first layer on a substrate and forming a second layer on the first layer. Forming the first layer includes applying virgin powder particles containing at least one rare-earth doped ceramic oxide onto the substrate. Forming the second layer includes applying recycled powder particles containing the at least one rare-earth doped ceramic oxide and at least one extraneous material onto the first layer. Another coating method is disclosed including mixing the virgin powder particles with the recycled powder particles to form a mixture of powder particles, and applying the mixture of powder particles onto the substrate. A coated article is disclosed including a substrate and a coating on the substrate, the coating including virgin powder particles of at least one rare-earth doped ceramic oxide and recycled powder particles including the at least one rare-earth doped ceramic oxide and at least one extraneous material.
Abstract:
A coating method, coating system and coated article are provided. The coating method includes providing a substrate, directing a coating material towards the substrate, the coating material contacting a coating region of the substrate to form a coating deposit, providing an energy source, and directing the energy source towards a first peripheral edge portion and a second peripheral edge portion of the coating region. The directing of the energy source is concurrent with the directing of the coating material. The coating system includes a substrate, a thermal spray nozzle directed towards the substrate, and an energy source directed towards the substrate. The energy source is configured to contact only a first peripheral edge portion and a second peripheral edge portion of a coating region of the substrate. The coated article includes a substrate, and a uniform thermal spray coating mechanically bonded to the substrate.
Abstract:
Manufactured articles, and methods of manufacturing enhanced surface smoothed components and articles. More particularly, surface smoothed components and articles, such as combustor components of turbine engines, having surface treatment conferring reduced roughness for enhanced performance and reduced wear related reduction in part life.