Abstract:
Aspects of the present disclosure include integrated circuit (IC) structure and methods for increasing a pitch between gates. Methods according to the present disclosure can include: providing an IC structure including: a first gate structure and a second gate structure each positioned on a substrate, a dummy gate positioned between the first and second gate structures, and forming a mask over the first and second gate structures; and selectively etching the dummy gate from the IC structure to expose a portion of the substrate underneath the dummy gate of the IC structure, without affecting the first and second gate structures.
Abstract:
An electronic device is provided. The electronic device includes a semiconductor layer, a dielectric layer disposed on the semiconductor layer, circuitry disposed on the dielectric layer that includes interconnected cells, first contact line metallization and second contact line metallization, first power metallization disposed in-plane with or above the circuitry and second power metallization disposed in a trench defined in at least the dielectric layer. The electronic device further includes insulation disposed to insulate the second power metallization from the circuitry and the first power metallization at first locations and to permit electrical communication between the second power metallization, the circuitry and the first power metallization at second locations.
Abstract:
Embodiments are directed to a method of forming portions of a fin-type field effect transistor (FinFET) device. The method includes forming at least one source region having multiple sides, forming at least one drain region having multiple sides, forming at least one channel region having multiple sides, forming at least one gate region around the multiple sides of the at least one channel region and forming the at least one gate region around the multiple sides of the at least one drain region.
Abstract:
In one aspect, a DSA-based method for forming a Kelvin-testable structure includes the following steps. A guide pattern is formed on a substrate which defines i) multiple pad regions of the Kelvin-testable structure and ii) a region interconnecting two of the pad regions on the substrate. A self-assembly material is deposited onto the substrate and is annealed at a temperature/duration sufficient to cause it to undergo self-assembly to form a self-assembled pattern on the substrate, wherein the self-assembly is directed by the guide pattern such that the self-assembled material in the region interconnecting the two pad regions forms multiple straight lines. A pattern of the self-assembled material is transferred to the substrate forming multiple lines in the substrate, wherein the pattern of the self-assembled material is configured such that only a given one of the lines is a continuous line between the two pad regions on the substrate.
Abstract:
Embodiments are directed to a method of forming portions of a fin-type field effect transistor (FinFET) device. The method includes forming at least one source region having multiple sides, forming at least one drain region having multiple sides, forming at least one channel region having multiple sides, forming at least one gate region around the multiple sides of the at least one channel region and forming the at least one gate region around the multiple sides of the at least one drain region.
Abstract:
A method for forming fin field effect transistors includes epitaxially growing source and drain (S/D) regions on fins, the S/D regions including a diamond-shaped cross section and forming a dielectric liner over the S/D regions. A dielectric fill is etched over the S/D regions to expose a top portion of the diamond-shaped cross section. The fins are recessed into the diamond-shaped cross section. A top portion of the diamond-shaped cross section of the S/D regions is exposed. A contact liner is formed on the top portion of the diamond-shaped cross section of the S/D regions and in a recess where the fins were recessed. Contacts are formed over surfaces of the top portion and in the recess.
Abstract:
Techniques for controlling short channel effects in III-V MOSFETs through the use of a halo-doped bottom (III-V) barrier layer are provided. In one aspect, a method of forming a MOSFET device is provided. The method includes the steps of: forming a III-V barrier layer on a substrate; forming a III-V channel layer on a side of the III-V barrier layer opposite the substrate, wherein the III-V barrier layer is configured to confine charge carriers in the MOSFET device to the III-V channel layer; forming a gate stack on a side of the III-V channel layer opposite the III-V barrier layer; and forming halo implants in the III-V barrier layer on opposite sides of the gate stack. A MOSFET device is also provided.
Abstract:
A semiconductor device (e.g., field effect transistor (FET)) having an asymmetric feature, includes a first gate formed on a substrate, first and second diffusion regions formed in the substrate on a side of the first gate, and first and second contacts which contact the first and second diffusion regions, respectively, the first contact being asymmetric with respect to the second contact.
Abstract:
An electronic device is provided. The electronic device includes a semiconductor layer, a dielectric layer disposed on the semiconductor layer, circuitry disposed on the dielectric layer that includes interconnected cells, first contact line metallization and second contact line metallization, first power metallization disposed in-plane with or above the circuitry and second power metallization disposed in a trench defined in at least the dielectric layer. The electronic device further includes insulation disposed to insulate the second power metallization from the circuitry and the first power metallization at first locations and to permit electrical communication between the second power metallization, the circuitry and the first power metallization at second locations.
Abstract:
Aspects of the present disclosure include integrated circuit (IC) structure and methods for increasing a pitch between gates. Methods according to the present disclosure can include: providing an IC structure including: a first gate structure and a second gate structure each positioned on a substrate, a dummy gate positioned between the first and second gate structures, and forming a mask over the first and second gate structures; and selectively etching the dummy gate from the IC structure to expose a portion of the substrate underneath the dummy gate of the IC structure, without affecting the first and second gate structures.