Abstract:
A SIT method includes the following steps. An SIT mandrel material is deposited onto a substrate and formed into a plurality of SIT mandrels. A spacer material is conformally deposited onto the substrate covering a top and sides of each of the SIT mandrels. Atomic Layer Deposition (ALD) is used to deposit the SIT spacer at low temperatures. The spacer material is selected from the group including a metal, a metal oxide, a metal nitride and combinations including at least one of the foregoing materials. The spacer material is removed from all but the sides of each of the SIT mandrels to form SIT sidewall spacers on the sides of each of the SIT mandrels. The SIT mandrels are removed selective to the SIT sidewall spacers revealing a pattern of the SIT sidewall spacers. The pattern of the SIT sidewall spacers is transferred to the underlying stack or substrate.
Abstract:
Techniques for integrating low temperature salicide formation in a replacement gate device process flow are provided. In one aspect, a method of fabricating a FET device is provided that includes the following steps. A dummy gate(s) is formed over an active area of a wafer. A gap filler material is deposited around the dummy gate. The dummy gate is removed selective to the gap filler material, forming a trench in the gap filler material. A replacement gate is formed in the trench in the gap filler material. The replacement gate is recessed below a surface of the gap filler material. A gate cap is formed in the recess above the replacement gate. The gap filler material is etched back to expose at least a portion of the source and drain regions of the device. A salicide is formed on source and drain regions of the device.
Abstract:
An electronic device is provided. The electronic device includes a semiconductor layer, a dielectric layer disposed on the semiconductor layer, circuitry disposed on the dielectric layer that includes interconnected cells, first contact line metallization and second contact line metallization, first power metallization disposed in-plane with or above the circuitry and second power metallization disposed in a trench defined in at least the dielectric layer. The electronic device further includes insulation disposed to insulate the second power metallization from the circuitry and the first power metallization at first locations and to permit electrical communication between the second power metallization, the circuitry and the first power metallization at second locations.
Abstract:
Silicided nanowires as nanobridges in Josephson junctions. A superconducting silicided nanowire is used as a weak-link bridge in a Josephson junction, and a fabrication process is employed to produce silicided nanowires that includes patterning two junction banks and a rough nanowire from a silicon substrate, reshaping the nanowire through hydrogen annealing, and siliciding the nanowire by introduction of a metal into the nanowire structure.
Abstract:
In one aspect, a DSA-based method for forming a Kelvin-testable structure includes the following steps. A guide pattern is formed on a substrate which defines i) multiple pad regions of the Kelvin-testable structure and ii) a region interconnecting two of the pad regions on the substrate. A self-assembly material is deposited onto the substrate and is annealed at a temperature/duration sufficient to cause it to undergo self-assembly to form a self-assembled pattern on the substrate, wherein the self-assembly is directed by the guide pattern such that the self-assembled material in the region interconnecting the two pad regions forms multiple straight lines. A pattern of the self-assembled material is transferred to the substrate forming multiple lines in the substrate, wherein the pattern of the self-assembled material is configured such that only a given one of the lines is a continuous line between the two pad regions on the substrate.
Abstract:
Techniques for defining a damascene gate in nanowire FET devices are provided. In one aspect, a method of fabricating a FET device is provided including the following steps. A SOI wafer is provided having a SOI layer over a BOX. Nanowires and pads are patterned in the SOI layer in a ladder-like configuration. The BOX is recessed under the nanowires. A patternable dielectric dummy gate(s) is formed over the recessed BOX and surrounding a portion of each of the nanowires. A CMP stop layer is deposited over the dummy gate(s) and the source and drain regions. A dielectric film is deposited over the CMP stop layer. The dielectric film is planarized using CMP to expose the dummy gate(s). The dummy gate(s) is at least partially removed so as to release the nanowires in a channel region. The dummy gate(s) is replaced with a gate conductor material.
Abstract:
In one aspect, a DSA-based method for forming a Kelvin-testable structure includes the following steps. A guide pattern is formed on a substrate which defines i) multiple pad regions of the Kelvin-testable structure and ii) a region interconnecting two of the pad regions on the substrate. A self-assembly material is deposited onto the substrate and is annealed at a temperature/duration sufficient to cause it to undergo self-assembly to form a self-assembled pattern on the substrate, wherein the self-assembly is directed by the guide pattern such that the self-assembled material in the region interconnecting the two pad regions forms multiple straight lines. A pattern of the self-assembled material is transferred to the substrate forming multiple lines in the substrate, wherein the pattern of the self-assembled material is configured such that only a given one of the lines is a continuous line between the two pad regions on the substrate.
Abstract:
An electronic device is provided. The electronic device includes a semiconductor layer, a dielectric layer disposed on the semiconductor layer, circuitry disposed on the dielectric layer that includes interconnected cells, first contact line metallization and second contact line metallization, first power metallization disposed in-plane with or above the circuitry and second power metallization disposed in a trench defined in at least the dielectric layer. The electronic device further includes insulation disposed to insulate the second power metallization from the circuitry and the first power metallization at first locations and to permit electrical communication between the second power metallization, the circuitry and the first power metallization at second locations.
Abstract:
An electronic device is provided. The electronic device includes a semiconductor layer, a dielectric layer disposed on the semiconductor layer, circuitry disposed on the dielectric layer that includes interconnected cells, first contact line metallization and second contact line metallization, first power metallization disposed in-plane with or above the circuitry and second power metallization disposed in a trench defined in at least the dielectric layer. The electronic device further includes insulation disposed to insulate the second power metallization from the circuitry and the first power metallization at first locations and to permit electrical communication between the second power metallization, the circuitry and the first power metallization at second locations.
Abstract:
An electronic device is provided. The electronic device includes a semiconductor layer, a dielectric layer disposed on the semiconductor layer, circuitry disposed on the dielectric layer that includes interconnected cells, first contact line metallization and second contact line metallization, first power metallization disposed in-plane with or above the circuitry and second power metallization disposed in a trench defined in at least the dielectric layer. The electronic device further includes insulation disposed to insulate the second power metallization from the circuitry and the first power metallization at first locations and to permit electrical communication between the second power metallization, the circuitry and the first power metallization at second locations.