Abstract:
Structures that include interconnects and methods for forming a structure that includes interconnects. A metallization level includes a metallization level having a first interconnect with a first top surface, a second interconnect with a second top surface, and a cavity with an entrance between the first interconnect and the second interconnect. A first dielectric layer includes a first section arranged on the first top surface of the first interconnect and a second section arranged on the second top surface of the second interconnect. The first section of the first dielectric layer is separated from the second section of the first dielectric layer by the entrance of the cavity. A second dielectric layer is arranged to surround the cavity and to close the entrance to the cavity in order to encapsulate an airgap inside the cavity.
Abstract:
Structures for interconnects and methods of forming interconnects. An interconnect opening in a dielectric layer includes a first portion and a second portion arranged over the first portion. A first conductor layer composed of a first metal is arranged inside the first portion of the interconnect opening. A second conductor layer composed of a second metal is arranged inside the second portion of the interconnect opening. The first metal is ruthenium.
Abstract:
Structures for a skip via and methods of forming a skip via in an interconnect structure. A metallization level is formed that includes a dielectric layer with a top surface. An opening is formed that extends vertically from the top surface of the dielectric layer into the dielectric layer. A dielectric cap layer is deposited on a bottom surface of the opening. A fill layer is formed inside the opening and extends from the top surface of the dielectric layer to the dielectric cap layer on the bottom surface of the opening. A via opening is etched that extends vertically through the fill layer to the dielectric cap layer on the bottom surface of the opening.
Abstract:
Embodiments of the present disclosure may provide methods of forming an IC structure with a pair of metal fins. An IC structure with a pair of metal fins can include two unitary metal fins positioned on a substrate and each including an elongated wire positioned on the substrate and a via positioned directly on a portion of the elongated wire, the elongated wire and the via of each unitary metal fin defining an inverted T-shape, wherein each unitary metal fin includes the elongated wire with a pair of opposing sidewalls substantially coplanar with a pair of opposing sidewalls of the via, and wherein the each unitary metal fin includes a single crystallographic orientation. An insulating layer can be positioned directly laterally between the two unitary metal fins.
Abstract:
One method disclosed includes performing a selective etching process through a gate cavity to selectively remove a portion of a first semiconductor material relative to a second layer of a second semiconductor material and a substrate so as to thereby define a space between the second semiconducting material and the substrate, filling substantially all of the space with an insulating material so as to thereby define a substantially self-aligned channel isolation region positioned under at least what will become the channel region of the FinFET device.
Abstract:
One illustrative method disclosed herein includes forming an initial nanowire structure having an initial cross-sectional size, performing a doping diffusion process to form an N-type doped region in the initial nanowire structure and performing an etching process to remove at least a portion of the doped region and thereby define a final nanowire structure having a final cross-sectional size, wherein the final cross-sectional size is smaller than the initial cross-sectional size.
Abstract:
Structures for measuring RIE lag depth of a semiconductor device, including: a first metal layer; a dielectric cap layer on top of the first metal layer; an electrical ground element formed beneath one or more portions of the dielectric cap layer and within the first metal layer, the electrical ground element being electrically grounded; and a second metal layer on top of the dielectric cap layer, the second metal layer having an array of one or more sub-arrays of metal wires, each sub-array being connected to a respective bond pad and having metal wires of a given width; wherein a distance from a bottom surface of the array of metal wires to a top surface of the dielectric cap layer is indicative of RIE lag depth. The disclosure also relates to methods and systems for measuring RIE lag depth and identifying the existence of an electrical short of a semiconductor device.
Abstract:
Methods of forming interconnects. An interconnect opening is formed in a dielectric layer. A first conductor layer composed of a first metal is formed in the interconnect opening. A second conductor layer is formed inside the interconnect opening by displacing the first metal of the first conductor layer and replacing the first metal with a second metal different from the first metal.
Abstract:
Structures for measuring RIE lag depth of a semiconductor device, including: a first metal layer; a dielectric cap layer on top of the first metal layer; an electrical ground element formed beneath one or more portions of the dielectric cap layer and within the first metal layer, the electrical ground element being electrically grounded; and a second metal layer on top of the dielectric cap layer, the second metal layer having an array of one or more sub-arrays of metal wires, each sub-array being connected to a respective bond pad and having metal wires of a given width; wherein a distance from a bottom surface of the array of metal wires to a top surface of the dielectric cap layer is indicative of RIE lag depth. The disclosure also relates to methods and systems for measuring RIE lag depth and identifying the existence of an electrical short of a semiconductor device.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to dielectric repair for via and skip via structures and methods of manufacture. The method includes: etching a via structure in a dielectric layer; repairing sidewalls of the via structure with a repair agent; and extending the via structure with an additional etching into a lower dielectric layer to form a skip via structure exposing a metallization layer.