Abstract:
A method of forming a semiconductor device includes forming a first vertical protection device comprising a thyristor in a substrate, forming a first lateral trigger element for triggering the first vertical protection device in the substrate, and forming an electrical path in the substrate to electrically couple the first lateral trigger element with the first vertical protection device.
Abstract:
A chip package and manufacturing method is disclosed. In one example, the method includes forming a carrier wafer with a plurality of trenches, each trench being at least partially covered with an electrically conductive sidewall coating. A semiconductor wafer is bonded on a front side of the carrier wafer. An electrically conductive connection structure is formed, including at least partially bridging a gap between the electrically conductive sidewall coating and an integrated circuit element of a respective one of the electronic chips. Material on a backside of the carrier wafer is removed to singularize the bonded wafers at the trenches into a plurality of semiconductor devices.
Abstract:
A vertically integrated semiconductor device in accordance with various embodiments may include: a first semiconducting layer; a second semiconducting layer disposed over the first semiconducting layer; a third semiconducting layer disposed over the second semiconducting layer; and an electrical bypass coupled between the first semiconducting layer and the second semiconducting layer.
Abstract:
An arrangement is provided. The arrangement may include: a substrate having a front side and a back side, a die region within the substrate, a multi-purpose layer defining a back side of the die region, and an etch stop layer disposed over the multi-purpose layer between the multi-purpose layer and the back side of the substrate. The multi-purpose layer may be formed of an ohmic material, and the etch stop layer may be of a first conductivity type of a first doping concentration.
Abstract:
In accordance with an embodiment of the present invention, a semiconductor package includes a die paddle and a protection device disposed over the die paddle. The protection device includes a first heat generating zone disposed in a substrate. The first heat generating zone is disposed at a first side facing the die paddle. A solder layer at the first heat generating zone joins the protection device with the die paddle.
Abstract:
According to various embodiments, a method for manufacturing a semiconductor device may include providing a semiconductor workpiece including a device region at a first side of the semiconductor workpiece, wherein a mechanical stability of the semiconductor workpiece is insufficient to resist at least one back end process without damage, and depositing at least one conductive layer over a second side of the semiconductor workpiece opposite the first side of the semiconductor workpiece, wherein the at least one conductive layer increases the mechanical stability of the semiconductor workpiece to be sufficient to resist the at least one back end process without damage.
Abstract:
An arrangement is provided. The arrangement may include: a die including at least one electronic component and a first terminal on a first side of the die and a second terminal on a second side of the die opposite the first side, wherein the first side being the main processing side of the die, and the die further including at least a third terminal on the second side; a first electrically conductive structure providing current flow from the third terminal on second side of the die to the first side through the die; a second electrically conductive structure on the first side of the die laterally coupling the second terminal with the first electrically conductive structure; and an encapsulation material disposed at least over the first side of the die covering the first terminal and the second electrically conductive structure.
Abstract:
According to various embodiments, a method for manufacturing a semiconductor device may include providing a semiconductor workpiece including a device region at a first side of the semiconductor workpiece, wherein a mechanical stability of the semiconductor workpiece is insufficient to resist at least one back end process without damage, and depositing at least one conductive layer over a second side of the semiconductor workpiece opposite the first side of the semiconductor workpiece, wherein the at least one conductive layer increases the mechanical stability of the semiconductor workpiece to be sufficient to resist the at least one back end process without damage.
Abstract:
A chip package and manufacturing method is disclosed. In one example, the method includes forming a carrier wafer with a plurality of trenches, each trench being at least partially covered with an electrically conductive sidewall coating. A semiconductor wafer is bonded on a front side of the carrier wafer. An electrically conductive connection structure is formed, including at least partially bridging a gap between the electrically conductive sidewall coating and an integrated circuit element of a respective one of the electronic chips. Material on a backside of the carrier wafer is removed to singularize the bonded wafers at the trenches into a plurality of semiconductor devices.
Abstract:
A semiconductor device includes a vertical protection device having a thyristor and a lateral trigger element disposed in a substrate. The lateral trigger element is for triggering the vertical protection device.