Abstract:
A method and structure for forming an array of LED devices is disclosed. The LED devices in accordance with embodiments of the invention may include a confined current injection area in which a current spreading layer protrudes away from a cladding layer in a pillar configuration so that the cladding layer is wider than the current spreading layer pillar.
Abstract:
A stabilization structure includes a stabilization layer on a carrier substrate. The stabilization layer includes an array of staging cavities. An array of micro devices are within the array of staging cavities. Each micro device is laterally attached to a shear release post laterally extending from a sidewall of a staging cavity. A pressure is applied to the array of micro devices from the array of transfer heads to shear the array of micro devices off the shear release posts. The sheared off micro devices are picked up from the carrier substrate using the array of transfer heads.
Abstract:
A method and structure for forming an array of LED devices is disclosed. The LED devices in accordance with embodiments of the invention may include a confined current injection area in which a current spreading layer protrudes away from a cladding layer in a pillar configuration so that the cladding layer is wider than the current spreading layer pillar.
Abstract:
A nanowire device and a method of forming a nanowire device that is poised for pick up and transfer to a receiving substrate are described. In an embodiment, the nanowire device includes a base layer and a nanowire on and protruding away from a first surface of the base layer. The nanowire may include a core, a shell, and an active layer between the core and the shell. A top electrode layer may be on a second surface of the base layer opposite the first surface and in electrical contact with the core, and a bottom electrode layer may be on and electrical contact with the shell. In an embodiment, the base layer is characterized by a maximum width of the micro scale, and the nanowire is characterized by a maximum width or length of the nano scale.
Abstract:
A method and structure for stabilizing an array of micro devices is disclosed. A stabilization layer includes an array of stabilization cavities and array of stabilization posts. Each stabilization cavity includes sidewalls surrounding a stabilization post. The array of micro devices is on the array of stabilization posts. Each micro device in the array of micro devices includes a bottom surface that is wider than a corresponding stabilization post directly underneath the bottom surface.
Abstract:
A stabilization structure includes a stabilization layer on a carrier substrate. The stabilization layer includes an array of staging cavities. An array of micro devices are within the array of staging cavities. Each micro device is laterally attached to a shear release post laterally extending from a sidewall of a staging cavity. A pressure is applied to the array of micro devices from the array of transfer heads to shear the array of micro devices off the shear release posts. The sheared off micro devices are picked up from the carrier substrate using the array of transfer heads.
Abstract:
A display panel and a method of forming a display panel are described. The display panel may include a thin film transistor substrate including a pixel area and a non-pixel area. The pixel area includes an array of bank openings and an array of bottom electrodes within the array of bank openings. A ground line is located in the non-pixel area and an array of ground tie lines run between the bank openings in the pixel area and are electrically connected to the ground line in the non-pixel area.
Abstract:
A method of fabricating and transferring a micro device and an array of micro devices to a receiving substrate are described. In an embodiment, an electrically insulating layer is utilized as an etch stop layer during etching of a p-n diode layer to form a plurality of micro p-n diodes. In an embodiment, an electrically conductive intermediate bonding layer is utilized during the formation and transfer of the micro devices to the receiving substrate.
Abstract:
A method and structure for stabilizing an array of micro devices is disclosed. The array of micro devices is formed on an array of stabilization posts formed from a thermoset material. Each micro device includes a bottom surface that is wider than a corresponding stabilization post directly underneath the bottom surface.
Abstract:
Reflective bank structures for light emitting devices are described. The reflective bank structure may include a substrate, an insulating layer on the substrate, and an array of bank openings in the insulating layer with each bank opening including a bottom surface and sidewalls. A reflective layer spans sidewalls of each of the bank openings in the insulating layer.