Abstract:
A method and structure for forming an array of LED devices is disclosed. The LED devices in accordance with embodiments of the invention may include a confined current injection area in which a current spreading layer protrudes away from a cladding layer in a pillar configuration so that the cladding layer is wider than the current spreading layer pillar.
Abstract:
A micro device transfer head array and method of forming a micro device transfer array from an SOI substrate are described. In an embodiment, the micro device transfer head array includes a base substrate and a patterned silicon layer over the base substrate. The patterned silicon layer may include a silicon interconnect and an array of silicon electrodes electrically connected with the silicon interconnect. Each silicon electrode includes a mesa structure protruding above the silicon interconnect. A dielectric layer covers a top surface of each mesa structure.
Abstract:
Systems and methods for transferring a micro device or an array of micro devices to or from a substrate are disclosed. In an embodiment, a remote center robot allows on-the-fly alignment between a micro pick up array and a target substrate. The remote center robot may include a plurality of symmetric linkages that move independently and share a remote rotational center. In an embodiment, the remote rotational center may be positioned at a surface of the micro pick up array to prevent damage to the array of micro devices during transfer.
Abstract:
Systems and methods for transferring a micro device from a carrier substrate are disclosed. In an embodiment, a mass transfer tool includes an articulating transfer head assembly, a carrier substrate holder, and an actuator assembly to adjust a spatial relationship between the articulating transfer head assembly and the carrier substrate holder. The articulating transfer head assembly may include an electrostatic voltage source connection and a substrate supporting an array of electrostatic transfer heads.
Abstract:
Micro pick up arrays for transferring micro devices from a carrier substrate are disclosed. In an embodiment, a micro pick up array includes a compliant contact for delivering an operating voltage from a voltage source to an array of electrostatic transfer heads. In an embodiment, the compliant contact is moveable relative to a base substrate of the micro pick up array.
Abstract:
A display module and system applications including a display module are described. The display module may include a display substrate including a front surface, a back surface, and a display area on the front surface. A plurality of interconnects extend through the display substrate from the front surface to the back surface. An array of light emitting diodes (LEDs) are in the display area and electrically connected with the plurality of interconnects, and one or more driver circuits are on the back surface of the display substrate. Exemplary system applications include wearable, rollable, and foldable displays.
Abstract:
A compliant electrostatic transfer head and method of forming a compliant electrostatic transfer head are described. In an embodiment, a compliant electrostatic transfer head includes a base substrate, a cavity template layer on the base substrate, a first confinement layer between the base substrate and the cavity template layer, and a patterned device layer on the cavity template layer. The patterned device layer includes an electrode that is deflectable toward a cavity in the cavity template layer. In an embodiment, a second confinement layer is between the cavity template layer and the patterned device layer.
Abstract:
A micro device transfer head array and method of forming a micro device transfer array from an SOI substrate are described. In an embodiment, the micro device transfer head array includes a base substrate and a patterned silicon layer over the base substrate. The patterned silicon layer may include a silicon interconnect and an array of silicon electrodes electrically connected with the silicon interconnect. Each silicon electrode includes a mesa structure protruding above the silicon interconnect. A dielectric layer covers a top surface of each mesa structure.
Abstract:
A stabilization structure includes a stabilization layer on a carrier substrate. The stabilization layer includes an array of staging cavities. An array of micro devices are within the array of staging cavities. Each micro device is laterally attached to a shear release post laterally extending from a sidewall of a staging cavity. A pressure is applied to the array of micro devices from the array of transfer heads to shear the array of micro devices off the shear release posts. The sheared off micro devices are picked up from the carrier substrate using the array of transfer heads.
Abstract:
Exemplary methods and systems use a micro light emitting diode (LED) in an active matrix display to emit and sense light. Display panels, systems, and methods of operation are described in which LEDs may be used for both emission and sensing.