摘要:
Embodiments of an eNodeB and method for small data transfer in a Wireless Network are generally described herein. A method performed by circuitry of a User Equipment (UE) can include determining, by the UE, whether the UE is configured to be used for Machine Type Communication (MTC). The method can include determining whether the UE has small data (SD) to transfer. The method can include configuring the UE to use a small data signaling radio bearer (SDSRB) to send the SD, in response to determining that the UE is configured to be used for MTC and the UE has SD to transfer. An evolved Node B can determine whether the UE is configured to be used for MTC, determine whether there is SD to transfer to the UE, wherein SD comprises data that has delay tolerance, and configure the UE to use a signaling bearer to send the SD.
摘要:
Apparatus, computer-readable medium, and method to support low complexity user equipment are disclosed. A wireless communication device including circuitry is disclosed. The circuitry may be configured to determine support of a target evolved nodeB (eNB) for a low complexity user equipment (LC-UE), and handover the LC-UE to the target eNB if the support of the target eNB indicates the target eNB supports LC-UE. The wireless communication device may be a long term evolution (LTE) wireless communication device. The wireless communication device may be one of the following a source eNB, a core network entity, a LC-UE, a source radio network controller (RNC), a base station, a source base service set (BSS). The circuitry may be configured to determine support of the target eNB for the LC-UE based on a configuration or information from the target eNB.
摘要:
Embodiments of a User Equipment (UE) and method for selecting a Radio Resource Control (RRC) inactivity timer for a service operating in a wireless network are generally described herein. In some embodiments, the UE may be configured to operate in a 3GPP network in accordance with a Radio Resource Control (RRC) inactivity timer that controls RRC state transitions of the UE, and further in accordance with a Machine Type Communication (MTC) mode of operation. The UE may receive, from an Evolved Node-B (eNB), one or more messages that may include an RRC inactivity timer keep connected support value that indicates support of a keep connected mode. In some embodiments, when the UE operates in keep connected mode, the UE operates in an RRC connected state and is restricted from operating in other RRC states.
摘要:
In Machine Type Communication (MTC) with a 3GPP Long Term Evolution (LTE) Network, there is often a need to transmit and receive small data payloads. New information elements (IEs) have been defined to ease the transmission and receipt of small data payloads. Methods and systems can use the new IEs to more efficiently transmit and receive data. The new IEs include a Small Data ACK IE and a Small Data Container IE. Other new messages include an RAC Release indicator and an RRC Connection Release.
摘要:
Embodiments of a Mobility Management Entity (MME) to support packet-switched (PS) services in a network in accordance with Evolved Packet System (EPS) bearers are disclosed herein. The MME may receive, from a User Equipment (UE), an indicator of Machine Type Communication (MTC) operation, which may indicate that the UE operates as an MTC UE. The MME may, at least partly in response to a determination of UE inactivity on an EPS bearer, transmit a bearer release message for release of an S5/S8 bearer included in the EPS bearer. In some embodiments, the indicator of MTC operation may include a permission indicator from the UE for the release of the S5/S8 bearer. In some embodiments, the indicator of MTC operation may include an indicator of transmission of small blocks of data or transmission at an infrequent rate.
摘要:
Embodiments of an eNodeB and method for Machine Type Communication in a Wireless Network are generally described herein. In some embodiments, a method performed by circuitry of an evolved Node B (eNodeB) can include receiving, by the eNodeB, a notification that a User Equipment (UE) is configured to be used for Machine Type Communication (MTC). The method can include determining whether the UE is in a Radio Resource Control Connected (RRC_Connected) state and determining whether the UE can enter a power saving mode. The method can include configuring the UE to change to an RRC Deep Idle mode, in response to determining that the UE is in the RRC_Connected state and the UE can enter the power saving mode.
摘要:
Embodiments of user equipment (UE) and base stations (eNodeB) and method for reducing power consumption in UE in a wireless network are generally described herein. In some embodiments, characteristics of UE including mobility, communication data load, and communication type are used by base stations, MME or other controlling entities to configure power saving features of the UE. Power saving features can include a new Radio Resource Control (RRC) layer state where circuitry is powered off for extended periods of time, extended Discontinuous Reception (DRX) cycles, reduced workloads in existing RRC, EPC Connection Management (ECM) and/or EPS Mobility Management (EMM) states or combinations thereof.
摘要:
A machine type communication interworking function (MTC-IWF) is configured to receive from a service capability exposure function (SCEF), services capability server (SCS), or a third-party application server (AS), application communication pattern information defined by an MTC application and representing characteristics of machine-to-machine (M2M) communications expected from a user equipment (UE) machine type communication (MTC) device. The MTC-IWF being configured to communicate the information to a mobility management entity (MME) that thereby provides core network (CN) originated assistance to an evolved universal terrestrial radio access network node B (eNB). Disclosed are embodiments for providing the information in the form of Diameter-based messages communicated through Tsp, T5, and other interfaces, or through an application programming interface (API) exposed by the SCEF, SCS, or MTC-IWF.
摘要:
Systems and methods for cell selection and/or reselection based on prioritize nodes are disclosed herein. User equipment (UE) may be configured to determine whether to select and/or reselect an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB). The eNB may be a dedicated eNB and/or may be communicatively coupled to a dedicated core network (CN). The dedicated eNB and/or the dedicated CN may be configured to optimize performance for UEs sharing particular characteristics. Accordingly, the selection and/or reselection criteria may be biased to encourage the UE to select and/or reselect towards a dedicated eNB and/or an eNB coupled to a dedicated CN. The eNB and/or CN may be dedicated to supporting particular types of UEs, types of nodes, types of traffic, types of subscriptions, UE mobilities, applications/services, other predetermined categories, and/or the like.
摘要:
In accordance with some embodiments, a new discontinuous reception (DRX) parameter change may be received in user equipment while the user equipment is using an existing DRX parameter. The user equipment continues to use the existing parameter and determines when a new discontinuous reception cycle is starting. The change to the next discontinuous reception parameter is implemented in the new discontinuous reception cycle. In some embodiments by having an agreed upon time to implement the change to the new parameter, signaling between an enhanced node B and user equipment may be reduced. Signaling overhead is a serious impediment to achieving high efficiency in wireless communications.