摘要:
The invention provides a semiconductor device. The semiconductor device includes a semiconductor chip having an active surface on which pads are disposed, a passivation layer pattern disposed to cover the active surface of the semiconductor chip and to expose the pads, a first insulation layer pattern disposed on the passivation layer pattern, a second insulation layer pattern disposed on only a portion of the first insulation layer pattern, and redistribution line patterns electrically connected to the pads and disposed so as to extend across the second insulation layer pattern and the first insulation layer pattern. A method of fabricating the same is also provided.
摘要:
Provided are a semiconductor memory device and a method of driving the device which can improve a noise characteristic of a voltage signal supplied to a memory cell of the device. The semiconductor memory device includes a first semiconductor chip and one or more second semiconductor chips stacked on the first chip. The first chip includes an input/output circuit for sending/receiving a voltage signal, a data signal, and a control signal to/from an outside system. The one or more second semiconductor chips each include a memory cell region for storing data. The second semiconductor chips receive at least one signal through one or more signal paths that are formed outside the input/output circuit of the first chip.
摘要:
A stack package may include a substrate having first and second faces opposite each other and an opening formed therein. The first semiconductor chip may be mounted on the first face of the substrate and include a through electrode in the middle region of the first semiconductor chip that is exposed through the opening. The second semiconductor chip may be stacked on the first semiconductor chip and electrically connected to the first semiconductor chip by the through electrode of the first semiconductor chip. The circuit pattern may be formed on the second face of the substrate and include a bonding pad arranged adjacent to the opening and electrically connected to the through electrode of the first semiconductor chip through the opening, an outer connection pad spaced apart from the bonding pad and a connection wiring extending from the opening to the outer connection pad via the bonding pad.
摘要:
The present invention relates to a three-dimensional semiconductor module having at least one unit semiconductor device connected to the outer-facing side surfaces of a multi-side ground block. The unit semiconductor device has a structure in which a semiconductor package (or semiconductor chip) is mounted on a unit wiring substrate. Ground pads to be connected to the outer-facing side surfaces of the ground block are formed on the first surface of the unit wiring substrate, the semiconductor chip is mounted on the second surface opposite to the first surface, and contact terminals electrically connected to the semiconductor chip are formed on the second surface.
摘要:
A chip stack package includes a plurality of chips that are stacked by using adhesive layers as intermediary media, and a through via electrode formed through the chips to electrically couple the chips. The through via electrode is classified as a power supply through via electrode, a ground through via electrode, or a signal transfer through via electrode. The power supply through via electrode and the ground through via electrode are formed of a first material such as copper, and the signal transfer through via electrode is formed of second material such as polycrystalline silicon doped with impurities. The signal transfer through via electrode may have a diametrically smaller cross section than that of each of the power supply through via electrode and the ground through via electrode regardless of their resistivities.
摘要:
Provided are a semiconductor memory device and a method of driving the device which can improve a noise characteristic of a voltage signal supplied to a memory cell of the device. The semiconductor memory device includes a first semiconductor chip and one or more second semiconductor chips stacked on the first chip. The first chip includes an input/output circuit for sending/receiving a voltage signal, a data signal, and a control signal to/from an outside system. The one or more second semiconductor chips each include a memory cell region for storing data. The second semiconductor chips receive at least one signal through one or more signal paths that are formed outside the input/output circuit of the first chip.
摘要:
A semiconductor device in which a plurality of chips can be reliably stacked without reducing integration thereof. The semiconductor device includes a substrate on which a circuit is provided. Pads are disposed on the substrate for testing the circuit. At least one terminal is provided on the substrate. First conductors are used to electrically couple the pads and the circuit. Second conductors are used to electrically couple the at least one terminal and the circuit. A switching element is disposed in the middle of the first conductors to control the electrical connection between the pads and the circuit. A plurality of semiconductor devices may be stacked on top of one another to form a stacked module, wherein chip selection lines are formed, which extend to the bottom of each of the semiconductor devices to electrically couple chip selection terminals from among the at least one terminal of the semiconductor devices.
摘要:
A semiconductor package module having no solder balls and a method of manufacturing the semiconductor package module are provided. The semiconductor package module includes a module board on which a plurality of semiconductor devices are able to be mounted, a semiconductor package bonded on the module board using an adhesive, being wire-bondable to the module board, and having already undergone an electrical final test, second wires electrically connecting second bond pads of the semiconductor package to bond pads of the module board; and a third sealing resin enclosing the second wires and the semiconductor package. Because the semiconductor package module does not use solder balls, degradation of solder joint reliability (SJR) can be prevented. Further, the use of a semiconductor package that has already undergone an electrical test can reduce degradation of the yield of a completed semiconductor package module.
摘要:
A wafer-level stack package includes semiconductor chips, first connection members, a second connection member, a substrate and an external connection terminal. The semiconductor chips have a power/ground pad and a signal pad. The first connection members are electrically connected to the power/ground pad and the signal pad of each of the semiconductor chips. The second connection member is electrically connected to at least one of the power/ground pads of each of the semiconductor chips, the power/ground pads being connected to the first connection members. The substrate supports the stacked semiconductor chips, the substrate including wirings that are electrically connected to the first connection members and the second connection member. The external connection terminal is provided on a surface of the substrate opposite to a surface where the semiconductor chips are stacked, wherein the external connection terminals are electrically connected to the wirings, respectively.
摘要:
A semiconductor module may include a circuit substrate with a first die on the circuit substrate and a second die on the first die. The first die may include at least one first data input/output pad on a first peripheral portion of the first die and at least one first control/address pad on a third peripheral portion, the third peripheral portion being separate from the first peripheral portion of the first die. The second die may include at least one second data input/output pad on a second peripheral portion and at least one second control/address pad on a fourth peripheral portion. The second peripheral portion of the second die is not overlapped with the first peripheral portion of the first die in plan view. The fourth peripheral portion of the second die overlaps at least a portion of the third peripheral portion of the first die.