Abstract:
Embodiments described herein relate to plasma processes. A plasma process includes generating a plasma containing negatively charged oxygen ions. A substrate is exposed to the plasma. The substrate is disposed on a pedestal while being exposed to the plasma. While exposing the substrate to the plasma, a negative direct current (DC) bias voltage is applied to the pedestal to repel the negatively charged oxygen ions from the substrate.
Abstract:
A method includes forming a contact spacer on a sidewall of an inter-layer dielectric, wherein the contact spacer encircles a contact opening, forming a silicide region in the opening and on a source/drain region, depositing an adhesion layer extending into the contact opening, and performing a treatment process, so that the contact spacer is treated. The treatment process is selected from the group consisting of an oxidation process, a carbonation process, and combinations thereof. The method further includes depositing a metal barrier over the adhesion layer, depositing a metallic material to fill the contact opening, and performing a planarization process to remove excess portions of the metallic material over the inter-layer dielectric.
Abstract:
A semiconductor structure with an improved metal structure is described. The semiconductor structure can include a substrate having an upper surface, an interconnect layer over the upper surface, and an additional structure deposited over the interconnect layer. The interconnect layer can include a patterned seed layer over the substrate, at least two metal lines over the seed layer, and a dielectric material between adjacent metal lines. A barrier layer can be deposited over the at least two metal lines. Methods of making the semiconductor structures are also described.
Abstract:
Embodiments described herein relate to plasma processes. A plasma process includes generating a plasma containing negatively charged oxygen ions. A substrate is exposed to the plasma. The substrate is disposed on a pedestal while being exposed to the plasma. While exposing the substrate to the plasma, a negative direct current (DC) bias voltage is applied to the pedestal to repel the negatively charged oxygen ions from the substrate.
Abstract:
A semiconductor structure with an improved metal structure is described. The semiconductor structure can include a substrate having an upper surface, an interconnect layer over the upper surface, and an additional structure deposited over the interconnect layer. The interconnect layer can include a patterned seed layer over the substrate, at least two metal lines over the seed layer, and a dielectric material between adjacent metal lines. A barrier layer can be deposited over the at least two metal lines. Methods of making the semiconductor structures are also described.
Abstract:
In a method of manufacturing a semiconductor device, a support layer is formed over a substrate. A patterned semiconductor layer made of a first semiconductor material is formed over the support layer. A part of the support layer under a part of the semiconductor layer is removed, thereby forming a semiconductor wire. A semiconductor shell layer made of a second semiconductor material different from the first semiconductor material is formed around the semiconductor wire.
Abstract:
The present disclosure relates to a method of forming a transistor device. In this method, first and second well regions are formed within a semiconductor substrate. The first and second well regions have first and second etch rates, respectively, which are different from one another. Dopants are selectively implanted into the first well region to alter the first etch rate to make the first etch rate substantially equal to the second etch rate. The first, selectively implanted well region and the second well region are etched to form channel recesses having equal recess depths. An epitaxial growth process is performed to form one or more epitaxial layers within the channel recesses.
Abstract:
The present disclosure relates to a method of forming a transistor device. In this method, first and second well regions are formed within a semiconductor substrate. The first and second well regions have first and second etch rates, respectively, which are different from one another. Dopants are selectively implanted into the first well region to alter the first etch rate to make the first etch rate substantially equal to the second etch rate. The first, selectively implanted well region and the second well region are etched to form channel recesses having equal recess depths. An epitaxial growth process is performed to form one or more epitaxial layers within the channel recesses.
Abstract:
A semiconductor structure with an improved metal structure is described. The semiconductor structure can include a substrate having an upper surface, an interconnect layer over the upper surface, and an additional structure deposited over the interconnect layer. The interconnect layer can include a patterned seed layer over the substrate, at least two metal lines over the seed layer, and a dielectric material between adjacent metal lines. A barrier layer can be deposited over the at least two metal lines. Methods of making the semiconductor structures are also described.
Abstract:
A method includes forming a dielectric layer over a conductive feature, and etching the dielectric layer to form an opening. The conductive feature is exposed through the opening. The method further includes forming a tungsten liner in the opening, wherein the tungsten liner contacts sidewalls of the dielectric layer, depositing a tungsten layer to fill the opening, and planarizing the tungsten layer. Portions of the tungsten layer and the tungsten liner in the opening form a contact plug.