摘要:
Embodiments described herein relate to plasma processes. A plasma process includes generating a plasma containing negatively charged oxygen ions. A substrate is exposed to the plasma. The substrate is disposed on a pedestal while being exposed to the plasma. While exposing the substrate to the plasma, a negative direct current (DC) bias voltage is applied to the pedestal to repel the negatively charged oxygen ions from the substrate.
摘要:
A method includes patterning a mandrel layer over a target layer to form first mandrels and second mandrels, the first mandrels having a larger width than the second mandrels. A spacer layer is formed over the first mandrels and the second mandrels, and altered so that a thickness of the spacer layer over the first mandrels is greater than a thickness of the spacer layer over the second mandrels. Spacers are formed from the spacer layer which have a greater width adjacent the first mandrels than the spacers which are adjacent the second mandrels. The spacers are used to etch a target layer.
摘要:
A method of forming integrated circuits includes forming Magnetic Tunnel Junction (MTJ) stack layers, depositing a conductive etch stop layer over the MTJ stack layers, depositing a conductive hard mask over the conductive etch stop layer, and patterning the conductive hard mask to form etching masks. The patterning is stopped by the conductive etch stop layer. The method further includes etching the conducive etch stop layer using the etching masks to define patterns, and etching the MTJ stack layers to form MTJ stacks.
摘要:
The present disclosure, in some embodiments, relates to a method of forming an integrated circuit. The method includes forming a first hard mask layer over a substrate and forming a second hard mask layer over the first hard mask layer. The second hard mask layer is patterned to define an island having a first width along a first direction. The island is patterned to form a patterned island having a second width along the first direction that is less than the first width. A sacrificial mask is formed over the first hard mask layer and the first hard mask layer is patterned according to the patterned island and the sacrificial mask.
摘要:
A method for forming semiconductor devices using damascene techniques provides self-aligned conductive lines that have an end-to-end spacing less than 60 nm without shorting. The method includes using at least one sacrificial hardmask layer to produce a mandrel and forming a void in the mandrel. The sacrificial hardmask layers are formed over a base material which is advantageously an insulating material. Another hardmask layer is also disposed over the base material and under the mandrel in some embodiments. Spacer material is formed alongside the mandrel and filling the void. The spacer material serves as a mask and at least one etching procedure is carried out to translate the pattern of the spacer material into the base material. The patterned base material includes trenches and raised portions. Conductive features are formed in the trenches using damascene techniques.
摘要:
Self-aligned double patterning methods that can be used in back-end-of-line (BEOL) processing and other stages of integrate circuit device manufacturing. In these methods, line termini are masked prior to self-aligned double patterning. The self-aligned double patterning involves forming a mandrel, the shape of which is determined by a lithographic mask. That same lithographic mask is used prior to self-aligned double patterning to trim the mask that determines the locations of line termini. The methods provide precise positioning of the line termini mask relative to the line locations determined by self-aligned double patterning. The methods forms consistent end-of-line shapes and allow line termini to be placed more closely together than would otherwise be feasible.
摘要:
A method for forming dual damascene structures in a semiconductor structure is disclosed. The method generally includes etching a substrate using a first hard mask to form a plurality of first trenches and vias, forming a set of first conductive lines and via interconnects, removing the first hard mask, etching the substrate using a second hard mask to form a plurality of second trenches and vias, and forming a set of second conductive lines and via interconnects. At least some of the first conductive lines are interspersed between some of the second conductive lines. A planarization process is used on the substrate after forming the first conductive lines and via interconnects before forming the second conductive lines and via interconnects.
摘要:
A method includes patterning a mandrel layer over a target layer to form first mandrels and second mandrels, the first mandrels having a larger width than the second mandrels. A spacer layer is formed over the first mandrels and the second mandrels, and altered so that a thickness of the spacer layer over the first mandrels is greater than a thickness of the spacer layer over the second mandrels. Spacers are formed from the spacer layer which have a greater width adjacent the first mandrels than the spacers which are adjacent the second mandrels. The spacers are used to etch a target layer.
摘要:
A semiconductor device includes a substrate; a memory array over the substrate, the memory array including first magnetic tunnel junctions (MTJs), where the first MTJs are in a first dielectric layer over the substrate; and a resistor circuit over the substrate, the resistor circuit including second MTJs, where the second MTJs are in the first dielectric layer.
摘要:
A method includes forming Magnetic Tunnel Junction (MTJ) stack layers, which includes depositing a bottom electrode layer; depositing a bottom magnetic electrode layer over the bottom electrode layer; depositing a tunnel barrier layer over the bottom magnetic electrode layer; depositing a top magnetic electrode layer over the tunnel barrier layer; and depositing a top electrode layer over the top magnetic electrode layer. The method further includes patterning the MTJ stack layers to form a MTJ; and performing a passivation process on a sidewall of the MTJ to form a protection layer. The passivation process includes reacting sidewall surface portions of the MTJ with a process gas comprising elements selected from the group consisting of oxygen, nitrogen, carbon, and combinations thereof.