摘要:
An anchorage in tissue is produced by holding a vibrating element and a counter element against each other such that their contact faces are in contact with each other, wherein at least one of the contact faces includes a thermoplastic material which is liquefiable by mechanical vibration. While holding and then moving the two elements against each other, the vibrating element is vibrated and due to the vibration the thermoplastic material is liquefied between the contact faces, and due to the relative movement is made to flow from between the contact faces and to penetrate tissue located adjacent to outer edges of the contact faces. For liquefaction of the thermoplastic material and for displacing it from between the contact faces, no force needs to act on the tissue surface which is to be penetrated by the liquefied material.
摘要:
An anchorage in tissue is produced by holding a vibrating element and a counter element against each other such that their contact faces are in contact with each other, wherein at least one of the contact faces includes a thermoplastic material which is liquefiable by mechanical vibration. While holding and then moving the two elements against each other, the vibrating element is vibrated and due to the vibration the thermoplastic material is liquefied between the contact faces, and due to the relative movement is made to flow from between the contact faces and to penetrate tissue located adjacent to outer edges of the contact faces. For liquefaction of the thermoplastic material and for displacing it from between the contact faces, no force needs to act on the tissue surface which is to be penetrated by the liquefied material.
摘要:
An anchorage in tissue is produced by holding a vibrating element and a counter element against each other such that their contact faces are in contact with each other, wherein at least one of the contact faces includes a thermoplastic material which is liquefiable by mechanical vibration. While holding and then moving the two elements against each other, the vibrating element is vibrated and due to the vibration the thermoplastic material is liquefied between the contact faces, and due to the relative movement is made to flow from between the contact faces and to penetrate tissue located adjacent to outer edges of the contact faces. For liquefaction of the thermoplastic material and for displacing it from between the contact faces, no force needs to act on the tissue surface which is to be penetrated by the liquefied material.
摘要:
An anchorage in tissue is produced by holding a vibrating element and a counter element against each other such that their contact faces are in contact with each other, wherein at least one of the contact faces includes a thermoplastic material which is liquefiable by mechanical vibration. While holding and then moving the two elements against each other, the vibrating element is vibrated and due to the vibration the thermoplastic material is liquefied between the contact faces, and due to the relative movement is made to flow from between the contact faces and to penetrate tissue located adjacent to outer edges of the contact faces. For liquefaction of the thermoplastic material and for displacing it from between the contact faces, no force needs to act on the tissue surface which is to be penetrated by the liquefied material.
摘要:
A method for joining two or more segments of a bone implant comprises the steps of placing a plurality of thin layers of an intermetallic material between first and second segments of the bone implant and applying a mechanical load to the plurality of layers. In a subsequent step, the plurality of layers are ignited by applying an external activation energy thereto, the ignition heating the plurality of layers to a reaction temperature and causing the segments to become affixed to one another after cooling.
摘要:
A two-piece fusion cage having opposed interior surfaces, vertical and lateral throughholes adapted to enhance fusion and a dovetail feature mating the opposed interior surfaces.
摘要:
An implant suitable for being anchored with the aid of mechanical vibration in an opening provided in bone tissue. The implant is compressible in the direction of a compression axis under local enlargement of a distance between a peripheral implant surface and the compression axis. The implant includes a coupling-in face which serves for coupling a compressing force and the mechanical vibrations into the implant, which coupling-in face is not parallel to the compression axis. The implant also includes a thermoplastic material which, in areas of the local distance enlargement, forms at least a part of the peripheral surface of the implant.
摘要:
The spinal cage comprises a structural component having sufficient strength to withstand the compressive loading between vertebral bodies. The structural component is integrated with an osteoconductive component to facilitate bone growth between the vertebral bodies. The structural component may comprise any of PEEK, PEKK, or other structural material. The osteoconductive component may comprise any of allograft, natural bone, tricalcium phosphate, hydroxyapatite or a blend of calcium carbonate, calcium lactate and other calcium salts. A method for making the spinal cage involves molding polymers around an osteoconductive component, heat staking, and may further include ultrasonically welding, snap fit or mechanically assembling and/or adhesively bonding components.
摘要:
The invention relates to an artificial intervertebral disc for placement between adjacent vertebrae. The artificial intervertebral disc is preferably designed to restore disc height and lordosis, allow for a natural range of motion, absorb shock and provide resistance to motion and axial compression. Furthermore, the intervertebral disc may be used in the cervical, the thoracic, or the lumber regions of the spine. The artificial intervertebral disc may include either singularly or in combination: an interior at least partially filled with a fluid; a valve for injecting fluid into the interior of the disk; a central region having a stiffness that is preferably greater than the stiffness of the outer regions thus enabling the disc to pivot about the central region. The central pivot may be formed by a center opening, a central chamber, an inner core or a central cable.
摘要:
A bio-absorbable cartilage repair system is provided for regenerating damaged or destroyed articular cartilage on a joint surface of a bone by establishing a chondrogenic growth-supporting matrix between an area of damaged or destroyed articular cartilage that has been removed and an adjacent healthy area of articular cartilage and subchondral cancellous bone. The system is an assembly of a delivery unit and a porous insert. The delivery unit is formed of bio-absorbable material and configured and dimensioned to be mounted in both an area of damaged or destroyed articular cartilage that has been removed and an adjacent healthy area of articular cartilage and cancellous bone. The delivery unit has a central body and a plurality of radially extending, flexible support arms projecting outwardly from the central body and configured and dimensioned to support the insert at least partially thereover. The insert is supported by the delivery unit, formed of bio-absorbable material, and establishes communication between the removed area and the adjacent healthy area for a chondrogenic growth-supporting matrix.