Method for achieving good adhesion between dielectric and organic material

    公开(公告)号:US09908774B2

    公开(公告)日:2018-03-06

    申请号:US15024942

    申请日:2014-09-15

    Inventor: Mickael Renault

    Abstract: The present invention generally relates to a method for forming a MEMS device and a MEMS device formed by the method. When forming the MEMS device, sacrificial material is deposited around the switching element within the cavity body. The sacrificial material is eventually removed to free the switching element in the cavity. The switching element has a thin dielectric layer thereover to prevent etchant interaction with the conductive material of the switching element. During fabrication, the dielectric layer is deposited over the sacrificial material. To ensure good adhesion between the dielectric layer and the sacrificial material, a silicon rich silicon oxide layer is deposited onto the sacrificial material before depositing the dielectric layer thereon.

    MICROELECTROMECHANICAL SYSTEM STRUCTURE AND METHOD FOR FABRICATING THE SAME

    公开(公告)号:US20170320727A1

    公开(公告)日:2017-11-09

    申请号:US15146741

    申请日:2016-05-04

    Abstract: A microelectromechanical system structure and a method for fabricating the same are provided. A method for fabricating a MEMS structure includes the following steps. A first substrate is provided, wherein a transistor, a first dielectric layer and an interconnection structure are formed thereon. A second substrate is provided, wherein a second dielectric layer and a thermal stability layer are formed on the second substrate. The first substrate is bonded to the second substrate, and the second substrate removed. A conductive layer is formed within the second dielectric layer and electrically connected to the interconnection structure. The thermal stability layer is located between the conductive layer and the interconnection structure. A growth temperature of a material of the thermal stability layer is higher than a growth temperature of a material of the conductive layer and a growth temperature of a material of the interconnection structure.

    MICROELECTROMECHANICAL DEVICE INCLUDING AN ENCAPSULATION LAYER OF WHICH A PORTION IS REMOVED TO EXPOSE A SUBSTANTIALLY PLANAR SURFACE HAVING A PORTION THAT IS DISPOSED OUTSIDE AND ABOVE A CHAMBER AND INCLUDING A FIELD REGION ON WHICH INTEGRATED CIRCUITS ARE FORMED, AND METHODS FOR FABRICATING SAME
    10.
    发明申请
    MICROELECTROMECHANICAL DEVICE INCLUDING AN ENCAPSULATION LAYER OF WHICH A PORTION IS REMOVED TO EXPOSE A SUBSTANTIALLY PLANAR SURFACE HAVING A PORTION THAT IS DISPOSED OUTSIDE AND ABOVE A CHAMBER AND INCLUDING A FIELD REGION ON WHICH INTEGRATED CIRCUITS ARE FORMED, AND METHODS FOR FABRICATING SAME 有权
    微电子装置,其中包括一部分的封装层,其中所述掩蔽层被移除以暴露出具有外部并在室外排出的部分的主要平面表面,并且包括形成集成电路的场区域及其制造方法

    公开(公告)号:US20110221013A1

    公开(公告)日:2011-09-15

    申请号:US12952895

    申请日:2010-11-23

    Abstract: There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. The material that encapsulates the mechanical structures, when deposited, includes one or more of the following attributes: low tensile stress, good step coverage, maintains its integrity when subjected to subsequent processing, does not significantly and/or adversely impact the performance characteristics of the mechanical structures in the chamber (if coated with the material during deposition), and/or facilitates integration with high-performance integrated circuits. In one embodiment, the material that encapsulates the mechanical structures is, for example, silicon (polycrystalline, amorphous or porous, whether doped or undoped), silicon carbide, silicon-germanium, germanium, or gallium-arsenide.

    Abstract translation: 这里描述和说明了许多发明。 在一个方面,本发明涉及MEMS器件,以及制造或制造MEMS器件的技术,其具有在最终封装之前封装在腔室中的机械结构。 当沉积时,封装机械结构的材料包括以下属性中的一个或多个:低拉伸应力,良好的阶梯覆盖,在经受后续加工时保持其完整性,不会显着和/或不利地影响 室中的机械结构(如果在沉积期间涂覆材料)和/或促进与高性能集成电路的集成。 在一个实施例中,封装机械结构的材料是例如硅(多晶,无定形或多孔,无论掺杂或未掺杂),碳化硅,硅 - 锗,锗或砷化镓。

Patent Agency Ranking