摘要:
A method for producing the component, and to the use of the component. The method for producing a three-dimensional, ceramic component containing silicon carbide, by a) providing a powdery composition having a grain size (d50) between 3 microns and 500 microns and comprising at least 50 wt % of coke, b) providing a liquid binder, c) depositing a layer of the material provided in a) in a planar manner and locally depositing drops of the material provided in b) onto said layer and repeating step c), the local depositing of the drops in the subsequent repetitions of the step is adapted in accordance with the desired shape of the component to be produced, d) at least partially curing or drying the binder and obtaining a green body having the desired shape of the component, e) carbonising the green body, and f) siliconising the carbonised green body by infiltration with liquid silicon.
摘要:
A ceramic bonded body may include a first member, a second member, a joining layer between the first member and the second member, and a covering layer which covers the joining layer and is located over the first member and the second member. The first member and the second member may include aluminum nitride-based ceramic. The joining layer and the covering layer may include at least aluminum, calcium, yttrium, and oxygen where, in 100 mass % of all of the constituents configuring the joining layer and the covering layer, the aluminum is 21 mass % or more converted to oxides, the calcium is 21 mass % or more converted to oxides, and the sum of the aluminum and the calcium converted to oxides is 86 mass % or more. The covering layer has a content of yttrium converted to oxides greater than that of the joining layer.
摘要:
Adhesive compositions and methods for bonding materials with different thermal expansion coefficients is provided. The adhesive is formulated using a flux material, a low flux material, and a filler material, where the filler material comprises particulate from at least one of the two components being bonded together. A thickening agent can also be used as part of the adhesive composition to aid in applying the adhesive and establishing a desired bond thickness. The method of forming a high strength bond using the disclosed adhesive does not require the use of intermediary layer or the use of high cure temperatures that could damage one or both of the components being bonded together.
摘要:
A manufacturing method of a multilayer shell-core composite structural component comprises the following procedures: (1) respectively preparing feeding material for injection forming of a core layer, a buffer layer and a shell layer, wherein the powders of feeding material of the core layer and the shell layer are selected from one or more of metallic powder, ceramic powder or toughened ceramic powder, and are different from each other, and the powder of feeding material of the buffer layer is gradient composite material powder; (2) layer by layer producing the blank of multilayer shell-core composite structural component by powder injection molding; (3) degreasing the blank; and (4) sintering the blank to obtain the multilayer shell-core composite structural component. The multilayer shell-core composite structural component has the advantages of high surface hardness, abrasion resistance, uniform thickness of the shell layer, stable and persistent performance.
摘要:
A method for forming a CMC article is disclosed, including forming a CMC precursor ply assembly. Forming the CMC precursor ply assembly includes laying up a plurality of CMC precursor plies and entraining a melt infiltration agent to form an entrained agent supply. Each of the plurality of CMC precursor plies includes a matrix precursor and a plurality of ceramic fibers. The plurality of CMC precursor plies and the entrained agent supply are arranged to form the CMC precursor ply assembly, which includes an article conformation. The method further includes carbonizing the CMC precursor ply assembly, infusing the melt infiltration agent from the entrained agent supply into the plurality of CMC precursor plies, and densifying the CMC precursor ply assembly with the melt infiltration agent to form the CMC article.
摘要:
A manufacturing method of a multilayer shell-core composite structural component comprises the following procedures: (1) respectively preparing feeding material for injection forming of a core layer, a buffer layer and a shell layer, wherein the powders of feeding material of the core layer and the shell layer are selected from one or more of metallic powder, ceramic powder or toughened ceramic powder, and are different from each other, and the powder of feeding material of the buffer layer is gradient composite material powder; (2) layer by layer producing the blank of multilayer shell-core composite structural component by powder injection molding; (3) degreasing the blank; and (4) sintering the blank to obtain the multilayer shell-core composite structural component. The multilayer shell-core composite structural component has the advantages of high surface hardness, abrasion resistance, uniform thickness of the shell layer, stable and persistent performance.
摘要:
The bonded body of the present invention includes: a ceramic member made of ceramics; and a Cu member which is made of Cu or a Cu alloy and bonded to the ceramic member through a Cu—P—Sn-based brazing filler material and a Ti material, wherein a Cu—Sn layer, in which Sn forms a solid solution with Cu, is formed at a bonded interface between the ceramic member and the Cu member, and intermetallic compounds containing P and Ti are dispersed in the Cu—Sn layer.
摘要:
Described herein are techniques for making a multiplayer zirconia sintered body. The techniques sinter a dental article to form the zirconia sintered body. The dental article includes multiple layers containing dental ceramic materials such as, zirconia oxide particles, yttria, a pigment, etc. In some implementations, the dental article may be partially sintered and coated using an organic material.
摘要:
There is disclosed a plugged honeycomb structure. A plugged honeycomb structure includes a honeycomb structure body of a segment structure and plugging portions disposed in open ends of cells formed in the honeycomb structure body, the honeycomb structure body has outer segments and inner segments disposed on an inner side than the outer segments in a cross section of the honeycomb structure body, and a material constituting the outer segments has a smaller heat capacity per unit volume than a material constituting the inner segments.
摘要:
A piezoelectric element used between a lowest use temperature T1 and a highest use temperature T2, includes a first electrode, a piezoelectric layer provided on the first electrode and made of a piezoelectric material including a composite oxide having a perovskite structure, the piezoelectric material having a morphotropic phase boundary which is inclined with respect to a temperature axis, and the piezoelectric material satisfying at least one of formulas T3≦T1≦T4 and T3≦T2≦T4, where T3 is a temperature corresponding to the morphotropic phase boundary at a lowest point and T4 is a temperature corresponding to the morphotropic phase boundary at a highest point and a second electrode provided on the piezoelectric layer.