Abstract:
An article comprises a body having a coating. The coating comprising a mixture of a first oxide and a second oxide. The coating includes a glaze on a surface of the coating, the glaze comprising a eutectic system having a super-lattice of a first fluoride and a second fluoride.
Abstract:
An article comprises a body having a protective coating. The protective coating is a thin film that comprises a metal oxy-fluoride. The metal oxy-fluoride has an empirical formula of MxOyFz, where M is a metal, y has a value of 0.1 to 1.9 times a value of x and z has a value of 0.1 to 3.9 times the value of x. The protective coating has a thickness of 1 to 30 microns and a porosity of less than 0.1%.
Abstract:
A component for a semiconductor processing chamber includes a ceramic body having at least one surface with a first average surface roughness of approximately 8-16 micro-inches. The component further includes a conformal protective layer on at least one surface of the ceramic body, wherein the conformal protective layer is a plasma resistant rare earth oxide film having a substantially uniform thickness of less than 300 μm over the at least one surface and having a second average surface roughness of below 10 micro-inches, wherein the second average surface roughness is equal to or less than the first average surface roughness.
Abstract:
A ring shaped body includes a top flat region, a ring inner side and a ring outer side. The ring inner side comprises an approximately vertical wall. A conformal protective layer is disposed on at least the top flat region, the ring inner side and the ring outer side of the ring shaped body. The protective layer has a first thickness of less than 300 μm on the top flat region and a second thickness on the vertical wall of the ring inner side, where the second thickness is 45-70% of the first thickness.
Abstract:
Disclosed herein are methods for producing an ultra-dense and ultra-smooth ceramic coating. A method includes feeding a solution comprising a metal precursor into a plasma sprayer. The plasma sprayer generates a stream toward an article, forming a ceramic coating on the article upon contact.
Abstract:
A method of manufacturing an article includes providing a component for an etch reactor. Ion beam sputtering with ion assisted deposition (IBS-IAD) is then performed to deposit a protective layer on at least one surface of the component, wherein the protective layer is a plasma resistant film having a thickness of less than 1000 μm.
Abstract:
A bonding component includes a first amount of an organofluorine polymer and a second amount of an organosilicon polymer which are chemically bound to each other and form a copolymer.
Abstract:
A method of manufacturing an article comprises providing a lid or nozzle for an etch reactor. Ion assisted deposition (IAD) is then performed to deposit a protective layer on at least one surface of the lid or nozzle, wherein the protective layer is a plasma resistant rare earth oxide film having a thickness of less than 300 μm and an average surface roughness of 10 micro-inches or less.
Abstract:
A method of manufacturing an article comprises providing an article. An ion assisted deposition (IAD) process is performed to deposit a second protective layer over a first protective layer. The second protective layer is a plasma resistant rare earth oxide having a thickness of less than 50 microns and a porosity of less than 1%. The second protective layer seals a plurality of cracks and pores of the first protective layer.
Abstract:
A solid sintered ceramic article may include Y2O3 at a concentration of approximately 40 molar % to approximately 60 molar % and Er2O3 at a concentration of approximately 400 molar % to approximately 60 molar %. An article may include a body and a plasma resistant ceramic coating on at least one surface of the body. The plasma resistant ceramic coating comprising Y2O3 at a concentration of approximately 30 molar % to approximately 60 molar %, Er2O3 at a concentration of approximately 20 molar % to approximately 60 molar %, and at least one of ZrO2, Gd2O3 or SiO2 at a concentration of over 0 molar % to approximately 30 molar %.
Abstract translation:固体烧结陶瓷制品可以包括浓度为约40摩尔%至约60摩尔%的Y 2 O 3和浓度为约400摩尔%至约60摩尔%的Er 2 O 3。 制品可以在身体的至少一个表面上包括主体和耐等离子体陶瓷涂层。 浓度为约30摩尔%至约60摩尔%的浓度为约20摩尔%至约60摩尔%的Er 2 O 3和浓度为约20摩尔%至约60摩尔%的至少一种ZrO 2,Gd 2 O 3或SiO 2的耐等离子体陶瓷涂层,其浓度为约30摩尔%至约60摩尔% 超过0摩尔%至约30摩尔%。