Abstract:
A method is provided for a reading memory even if there is a threshold voltage in an overlapped threshold voltage (VTH) region between a first state distribution and a second state distribution. The method includes ramping a bias on a memory cell a first time to determine a first threshold voltage (VTH1) of the memory cell and determining whether the VTH1 is within the overlapped VTH region. Upon determination that the memory cell is within the overlapped VTH region, the method further includes applying a write pulse to the memory cell; ramping a bias on the memory cell a second time to determine a second threshold voltage (VTH2); and determining the state of the memory cell prior to receiving the write pulse based on a comparison between the VTH1 and the VTH2.
Abstract:
Methods, systems, and devices are described for operating a memory array. A first voltage may be applied to a memory cell to activate a selection component of the memory cell prior to applying a second voltage to the memory cell. The second voltage may be applied to facilitate a sensing operation once the selection component is activated. The first voltage may be applied during a first portion of an access operation and may be used in determining a threshold voltage of the selection component. The subsequently applied second voltage may be applied during a second portion of the access operation and may have a magnitude associated with a preferred voltage for accessing a ferroelectric capacitor of the memory cell. In some cases, the second voltage has a greater rate of increase over time (e.g., a greater “ramp”) than the first voltage.
Abstract:
Methods, systems, and devices for operating a ferroelectric memory cell or cells are described. A cell may be written with a value that is intended to convey a different logic state than may typically be associated with the value. For example, a cell that has stored a charge associated with one logic state for a time period may be re-written to store a different charge, and the re-written cell may still be read to have the originally stored logic state. An indicator may be stored in a latch to indicate whether the logic state currently stored by the cell is the intended logic state of the cell. A cell may, for example, be re-written with an opposite value periodically, based on the occurrence of an event, or based on a determination that the cell has stored one value (or charge) for a certain time period.
Abstract:
A phase change memory device with memory cells (2) formed by a phase change memory element (3) and a selection switch (4). A reference cell (2a) formed by an own phase change memory element (3) and an own selection switch (4) is associated to a group (7) of memory cells to be read. An electrical quantity of the group of memory cells is compared with an analogous electrical quantity of the reference cell, thereby compensating any drift in the properties of the memory cells.
Abstract:
Methods and systems to refresh a nonvolatile memory device, such as a phase change memory. In an embodiment, as a function of system state, a memory device performs either a first refresh of memory cells using a margined read reference level or a second refresh of error-corrected memory cells using a non-margined read reference level.
Abstract:
A method is provided for a reading memory even if there is a threshold voltage in an overlapped threshold voltage (VTH) region between a first state distribution and a second state distribution. The method includes ramping a bias on a memory cell a first time to determine a first threshold voltage (VTH1) of the memory cell and determining whether the VTH1 is within the overlapped VTH region. Upon determination that the memory cell is within the overlapped VTH region, the method further includes applying a write pulse to the memory cell; ramping a bias on the memory cell a second time to determine a second threshold voltage (VTH2); and determining the state of the memory cell prior to receiving the write pulse based on a comparison between the VTH1 and the VTH2.
Abstract:
The present disclosure includes apparatuses and methods for sensing a resistance variable memory cell. A number of embodiments include circuitry to provide a programming signal to a memory cell in the array, the programming signal associated with programming the memory cell to a particular data state; and determine, via an integration component, if a data state of the memory cell changes to a different data state responsive to the programming signal being provided.
Abstract:
The present disclosure includes apparatuses and methods for sensing a resistance variable memory cell. A number of embodiments include programming a memory cell to an initial data state and determining a data state of the memory cell by applying a programming signal to the memory cell, the programming signal associated with programming memory cells to a particular data state, and determining whether the data state of the memory cell changes from the initial data state to the particular data state during application of the programming signal.