Post-CMP hybrid wafer cleaning technique
    95.
    发明授权
    Post-CMP hybrid wafer cleaning technique 有权
    CMP后混合晶片清洗技术

    公开(公告)号:US09548222B2

    公开(公告)日:2017-01-17

    申请号:US14047144

    申请日:2013-10-07

    Inventor: John H. Zhang

    Abstract: A brush-cleaning apparatus is disclosed for use in cleaning a semiconductor wafer after polishing. Embodiments of the brush-cleaning apparatus implemented with a multi-branch chemical dispensing unit are applied beneficially to clean semiconductor wafers, post-polish, using a hybrid cleaning method. An exemplary hybrid cleaning method employs a two-chemical sequence in which first and second chemical treatment modules are separate from one another, and are followed by a pH-neutralizing-rinse that occurs in a treatment module separate from the first and second chemical treatment modules. Implementation of such hybrid methods is facilitated by the multi-branch chemical dispensing unit, which provides separate chemical lines to different chemical treatment modules, and dispenses chemical to at least four different areas of each wafer during single-wafer processing in an upright orientation. The multi-branch chemical dispensing unit provides a flexible, modular building block for constructing various equipment configurations that use multiple chemical treatments and/or pH neutralization steps.

    Abstract translation: 公开了用于清洁抛光后的半导体晶片的刷子清洁装置。 使用多分支化学分配单元实施的刷子清洁装置的实施例有利地应用混合清洗方法来清洁半导体晶片,后抛光。 示例性的混合清洁方法采用其中第一和第二化学处理组件彼此分离的双化学序列,然后是在与第一和第二化学处理模块分离的处理模块中发生的pH中和漂洗 。 这种混合方法的实现通过多分支化学分配单元来实现,该分支化学分配单元向不同的化学处理模块提供单独的化学品流,并且在直立取向的单晶片处理期间将化学品分配给每个晶片的至少四个不同区域。 多分支化学分配单元提供了一种灵活的模块化构建块,用于构建使用多种化学处理和/或pH中和步骤的各种设备配置。

    STACKED SHORT AND LONG CHANNEL FINFETS
    96.
    发明申请
    STACKED SHORT AND LONG CHANNEL FINFETS 审中-公开
    堆叠短路和长通道熔体

    公开(公告)号:US20170005012A1

    公开(公告)日:2017-01-05

    申请号:US15238559

    申请日:2016-08-16

    Abstract: An analog integrated circuit is disclosed in which short channel transistors are stacked on top of long channel transistors, vertically separated by an insulating layer. With such a design, it is possible to produce a high density, high power, and high performance analog integrated circuit chip including both short and long channel devices that are spaced far enough apart from one another to avoid crosstalk. In one embodiment, the transistors are FinFETs and the long channel devices are multi-gate FinFETs. In one embodiment, single and dual damascene devices are combined in a multi-layer integrated circuit cell. The cell may contain various combinations and configurations of the short and long-channel devices. A high density cell can be made by simply shrinking the dimensions of the cells and replicating two or more cells in the same size footprint as the original cell.

    Abstract translation: 公开了一种模拟集成电路,其中短沟道晶体管堆叠在由绝缘层垂直分隔的长沟道晶体管的顶部。 通过这样的设计,可以生产高密度,高功率和高性能的模拟集成电路芯片,其包括彼此间隔足够远的短路和长通道设备,以避免串扰。 在一个实施例中,晶体管是FinFET,并且长沟道器件是多栅极FinFET。 在一个实施例中,将单镶嵌和双镶嵌装置组合在多层集成电路单元中。 小区可以包含短路和长通道设备的各种组合和配置。 可以通过简单地收缩细胞的尺寸并复制与原始细胞相同尺寸足迹的两个或更多个细胞来制造高密度细胞。

    Integrated cantilever switch
    98.
    发明授权
    Integrated cantilever switch 有权
    集成悬臂开关

    公开(公告)号:US09466452B1

    公开(公告)日:2016-10-11

    申请号:US14675359

    申请日:2015-03-31

    Abstract: An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 μm2.

    Abstract translation: 纳米级机电开关形式的集成晶体管消除了CMOS电流泄漏并提高了开关速度。 纳米尺度的机电开关具有从衬底的一部分延伸到空腔中的半导体悬臂。 悬臂响应于施加到晶体管栅极的电压而弯曲,从而在栅极下形成导电沟道。 当设备关闭时,悬臂返回到静止位置。 悬臂的这种运动打破了电路,恢复了阻挡电流的门下方的空隙,从而解决了泄漏问题。 纳米机电开关的制造与现有的CMOS晶体管制造工艺兼容。 通过掺杂悬臂并使用背偏压和金属悬臂尖,可以进一步提高开关的灵敏度。 纳米机电开关的占地面积可以小至0.1×0.1μm2。

    METHODS AND DEVICES FOR ENHANCING MOBILITY OF CHARGE CARRIERS
    100.
    发明申请
    METHODS AND DEVICES FOR ENHANCING MOBILITY OF CHARGE CARRIERS 审中-公开
    方法和装置,用于增强充电载体的移动性

    公开(公告)号:US20160118307A1

    公开(公告)日:2016-04-28

    申请号:US14986229

    申请日:2015-12-31

    Abstract: Methods and devices for enhancing mobility of charge carriers. An integrated circuit may include semiconductor devices of two types. The first type of device may include a metallic gate and a channel strained in a first manner. The second type of device may include a metallic gate and a channel strained in a second manner. The gates may include, collectively, three or fewer metallic materials. The gates may share a same metallic material. A method of forming the semiconductor devices on an integrated circuit may include depositing first and second metallic layers in first and second regions of the integrated circuit corresponding to the first and second gates, respectively.

    Abstract translation: 增强载流子迁移率的方法和装置。 集成电路可以包括两种类型的半导体器件。 第一类型的装置可以包括金属门和以第一方式应变的通道。 第二类型的装置可以包括金属门和以第二方式应变的通道。 这些门可以共同地包括三种或更少的金属材料。 门可以共享相同的金属材料。 在集成电路上形成半导体器件的方法可以包括分别在对应于第一和第二栅极的集成电路的第一和第二区域中沉积第一和第二金属层。

Patent Agency Ranking