Abstract:
Metal quantum dots are incorporated into doped source and drain regions of a MOSFET array to assist in controlling transistor performance by altering the energy gap of the semiconductor crystal. In a first example, the quantum dots are incorporated into ion-doped source and drain regions. In a second example, the quantum dots are incorporated into epitaxially doped source and drain regions.
Abstract:
Processes and overturned thin film device structures generally include a metal gate having a concave shape defined by three faces. The processes generally include forming the overturned thin film device structures such that the channel self-aligns to the metal gate and the contacts can be self-aligned to the sacrificial material.
Abstract:
A method for making a semiconductor device may include forming a first dielectric layer above a semiconductor substrate, forming a first trench in the first dielectric layer, filling the first trench with electrically conductive material, removing upper portions of the electrically conductive material to define a lower conductive member with a recess thereabove, forming a filler dielectric material in the recess to define a second trench. The method may further include filling the second trench with electrically conductive material to define an upper conductive member, forming a second dielectric layer over the first dielectric layer and upper conductive member, forming a first via through the second dielectric layer and underlying filler dielectric material to the lower conductive member, and forming a second via through the second dielectric layer to the upper conductive member.
Abstract:
A vertical tunneling FET (TFET) provides low-power, high-speed switching performance for transistors having critical dimensions below 7 nm. The vertical TFET uses a gate-all-around (GAA) device architecture having a cylindrical structure that extends above the surface of a doped well formed in a silicon substrate. The cylindrical structure includes a lower drain region, a channel, and an upper source region, which are grown epitaxially from the doped well. The channel is made of intrinsic silicon, while the source and drain regions are doped in-situ. An annular gate surrounds the channel, capacitively controlling current flow through the channel from all sides. The source is electrically accessible via a front side contact, while the drain is accessed via a backside contact that provides low contact resistance and also serves as a heat sink. Reliability of vertical TFET integrated circuits is enhanced by coupling the vertical TFETs to electrostatic discharge (ESD) diodes.
Abstract:
A brush-cleaning apparatus is disclosed for use in cleaning a semiconductor wafer after polishing. Embodiments of the brush-cleaning apparatus implemented with a multi-branch chemical dispensing unit are applied beneficially to clean semiconductor wafers, post-polish, using a hybrid cleaning method. An exemplary hybrid cleaning method employs a two-chemical sequence in which first and second chemical treatment modules are separate from one another, and are followed by a pH-neutralizing-rinse that occurs in a treatment module separate from the first and second chemical treatment modules. Implementation of such hybrid methods is facilitated by the multi-branch chemical dispensing unit, which provides separate chemical lines to different chemical treatment modules, and dispenses chemical to at least four different areas of each wafer during single-wafer processing in an upright orientation. The multi-branch chemical dispensing unit provides a flexible, modular building block for constructing various equipment configurations that use multiple chemical treatments and/or pH neutralization steps.
Abstract:
An analog integrated circuit is disclosed in which short channel transistors are stacked on top of long channel transistors, vertically separated by an insulating layer. With such a design, it is possible to produce a high density, high power, and high performance analog integrated circuit chip including both short and long channel devices that are spaced far enough apart from one another to avoid crosstalk. In one embodiment, the transistors are FinFETs and the long channel devices are multi-gate FinFETs. In one embodiment, single and dual damascene devices are combined in a multi-layer integrated circuit cell. The cell may contain various combinations and configurations of the short and long-channel devices. A high density cell can be made by simply shrinking the dimensions of the cells and replicating two or more cells in the same size footprint as the original cell.
Abstract:
Processes and overturned thin film device structures generally include a metal gate having a concave shape defined by three faces. The processes generally include forming the overturned thin film device structures such that the channel self-aligns to the metal gate and the contacts can be self-aligned to the sacrificial material.
Abstract:
An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 μm2.
Abstract:
A wavy line interconnect structure that accommodates small metal lines and enlarged diameter vias is disclosed. The enlarged diameter vias can be formed using a self-aligned dual damascene process without the need for a separate via lithography mask. The enlarged diameter vias make direct contact with at least three sides of the underlying metal lines, and can be aligned asymmetrically with respect to the metal line to increase the packing density of the metal pattern. The resulting vias have an aspect ratio that is relatively easy to fill, while the larger via footprint provides low via resistance. An interconnect structure having enlarged diameter vias can also feature air gaps to reduce the chance of dielectric breakdown. By allowing the via footprint to exceed the minimum size of the metal line width, a path is cleared for further process generations to continue shrinking metal lines to dimensions below 10 nm.
Abstract:
Methods and devices for enhancing mobility of charge carriers. An integrated circuit may include semiconductor devices of two types. The first type of device may include a metallic gate and a channel strained in a first manner. The second type of device may include a metallic gate and a channel strained in a second manner. The gates may include, collectively, three or fewer metallic materials. The gates may share a same metallic material. A method of forming the semiconductor devices on an integrated circuit may include depositing first and second metallic layers in first and second regions of the integrated circuit corresponding to the first and second gates, respectively.