摘要:
A semiconductor package with a heat dissipating device and a fabrication method of the semiconductor package are provided. A chip is mounted on a substrate. The heat dissipating device is mounted on the chip, and includes an accommodating room, and a first opening and a second opening that communicate with the accommodating room. An encapsulant is formed between the heat dissipating device and the substrate to encapsulate the chip. A cutting process is performed to remove a non-electrical part of structure and expose the first and second openings from the encapsulant. A cooling fluid is received in the accommodating room to absorb and dissipate heat produced by the chip. The heat dissipating device covers the encapsulant and the chip to provide a maximum heat transfer area for the semiconductor package.
摘要:
A semiconductor package on which a semiconductor device can be stacked and fabrication method thereof are provided. The fabrication method includes the steps of mounting and electrically connecting at least one semiconductor chip on the substrate, mounting an electrical connecting structure consisting of an upper layer circuit board and a lower layer circuit board on the substrate and electrically connecting the electrical connecting structure to the substrate, where the semiconductor chip is received in a receiving space formed in the electrical connecting structure; forming an encapsulant on the substrate encapsulating the semiconductor chip and the electrical connecting structure, and after the encapsulant is formed, exposing top surface of the upper layer circuit board with a plurality of solder pads from the encapsulant to allow at least one semiconductor device to electrically connect the upper layer circuit board so as to form a stack structure.
摘要:
A method of forming a package structure with reduced damage to semiconductor dies is provided. The method includes providing a die comprising bond pads on a top surface of the die; forming bumps on the bond pads of the die, wherein the bumps have top surfaces higher than the top surface of the die; mounting the die on a chip carrier, wherein the bumps are attached to the chip carrier; molding the die onto the chip carrier with a molding compound; de-mounting the chip carrier from the die; and forming redistribution traces over, and electrically connected to, the bumps of the die.
摘要:
An enhanced wafer level chip scale packaging (WLCSP) copper electrode post is described having one or more pins that protrude from the top of the electrode post. When the solder ball is soldered onto the post, the pins are encapsulated within the solder material. The pins not only add shear strength to the soldered joint between the solder ball and the electrode post but also create a more reliable electrical connection due to the increased surface area between the electrode post/pin combination and the solder ball. Moreover, creating an irregularly shaped solder joint retards the propagation of cracks that may form in the intermetal compounds (IMC) layer formed at the solder joint.
摘要:
A method for packaging a semiconductor device disclosed. A substrate comprising a plurality of dies, separated by scribe line areas respectively is provided, wherein at least one layer is overlying the substrate. A portion of the layer within the scribe lines area is removed by photolithography and etching to form openings. The substrate is sawed along the scribe line areas, passing the openings. In alternative embodiment, a first substrate comprising a plurality of first dies separated by first scribe line areas respectively is provided, wherein at least one first structural layer is overlying the first substrate. The first structural layer is patterned to form first openings within the first scribe line areas. A second substrate comprising a plurality of second dies separated by second scribe line areas respectively is provided, wherein at least one second structural layer is overlying the substrate. The second structural layer is patterned to form second openings within the second scribe line areas. The first substrate and the second substrate are bonded to form a stack structure. The stack structure is cut along the first and second scribe line areas, passing the first and second openings.
摘要:
A chip scale package structure and a method for fabricating the same are disclosed. The method includes forming metal pads on a predetermined part of a carrier; mounting chips on the carrier, each of the chips having a plurality of conductive bumps soldered to the metal pads; forming an encapsulant on the carrier to encapsulate the chips and the conductive bumps; removing the carrier to expose the metal pads and even the metal pads with a surface of the encapsulant; forming on the encapsulant a plurality of first conductive traces electrically connected to the metal pads; applying a solder mask on the first conductive traces, and forming a plurality of openings on the solder mask to expose a predetermined part of the first conductive traces; forming a plurality of conductive elements on the predetermined part; and cutting the encapsulant to form a plurality of chip scale package structures.
摘要:
The present invention provides a semiconductor package and a fabrication method thereof. The method includes the steps of: providing a chip carrier module having a plurality of chip carriers, disposing a plurality of electrical connecting points on the chip carriers, performing chip mounting and molding on the chip carrier module to form an encapsulant encapsulating the semiconductor chip, exposing the electrical connecting points from the encapsulant; forming a patterned circuit layer on the encapsulant, electrically connecting the patterned circuit layer to the electrical connecting points, cutting and separating the chip carriers to form a plurality of semiconductor packages each having a circuit layer formed on the encapsulant such that the circuit layer provides extra electrical connecting points and thereby enhances electrical performance of electrical products. During a package stacking process, no package is limited by the design of another package below.
摘要:
A multi-chip semiconductor package and a fabrication method thereof are provided. At least one first chip is mounted on and electrically connected to an upper surface of a substrate via solder bumps. A preformed package structure having a second chip and a first encapsulation body is mounted on the upper surface of the substrate, wherein outer leads of the preformed package structure are exposed from the first encapsulation body and electrically connected to the upper surface of the substrate. The first encapsulation body, outer leads and substrate form a space where the first chip is received, and a gap is present between the first chip and the first encapsulation body. A second encapsulation body is formed on the upper surface of the substrate to encapsulate the first chip, solder bumps and preformed package structure. A plurality of solder balls are implanted on the lower surface of the substrate.
摘要:
A stack structure of semiconductor packages and a method for fabricating the stack structure are provided. A plurality of electrical connection pads and dummy pads are formed on a surface of a substrate of an upper semiconductor package and at positions corresponding to those around an encapsulant of a lower semiconductor package. Solder balls are implanted to the electrical connection pads and the dummy pads. The upper semiconductor package is mounted on the lower semiconductor package. The upper semiconductor package is electrically connected to the lower semiconductor package by the solder balls implanted to the electrical connection pads, and the encapsulant of the lower semiconductor package is surrounded and confined by the solder balls implanted to the dummy pads. Thereby, the upper semiconductor package is properly and securely positioned on the lower semiconductor package, without the occurrence of misalignment between the upper and lower semiconductor packages.
摘要:
A semiconductor package with a heat dissipating device and a fabrication method of the semiconductor package are provided. A chip is mounted on a substrate. The heat dissipating device is mounted on the chip, and includes an accommodating room, and a first opening and a second opening that communicate with the accommodating room. An encapsulant is formed between the heat dissipating device and the substrate to encapsulate the chip. A cutting process is performed to remove a non-electrical part of structure and expose the first and second openings from the encapsulant. A cooling fluid is received in the accommodating room to absorb and dissipate heat produced by the chip. The heat dissipating device covers the encapsulant and the chip to provide a maximum heat transfer area for the semiconductor package.